Metabolismo espermático

Autores/as

  • Celeste Flores Universidad Centroccidental Lisandro Alvarado, Venezuela
  • Lourdes Vilanova Universidad Centroccidental Lisandro Alvarado, Venezuela

Palabras clave:

espermatozoide, metabolismo, glicolisis, fosforilación oxidativa

Resumen

El espermatozoide es una célula altamente especializada y su actividad metabólica varía de acuerdo a diferentes etapas de la vida del gameto cual está determinada por señales del medio que lo rodea con el fin de lograr la fecundación. El espermatozoide requiere de un metabolismo energético que genere suficiente energía libre para movilidad flagelar, que ocurre de manera más eficiente en condiciones aeróbicas, principalmente por fosforilación oxidativa a nivel de las mitocondrias que se encuentran en la pieza intermedia del flagelo; sin embargo, esto no es suficiente para alcanzar la hiperactividad del movimiento flagelar durante la capacitación, por lo que la  pieza principal posee toda la maquinaria enzimática para generar ATP a partir de la glicólisis, la cual es fundamental para el proceso de fecundación.

Descargas

La descarga de datos todavía no está disponible.

Citas

[1] Roldan E. Forma, función y fertilidad de los espermatozoides. Grupo de Ecología y Biología de la Reproducción, Museo Nacional de Ciencias Naturales (CSIC). 2012. http://www.sebbm.es/archivos_tinymce/2012_eduardoroldan.pdf. recuperado: 07-07-2014.
[2] Del Río M, Godoy A, Toro A, Orellana R, Cortés M, Moreno R, Vigil P. La reacción acrosómica del espermatozoide: avances recientes. Rev Int Androl. 2007; 5(4):368-373.
[3] Gómez-Torres M., Girela, J. La, Fernández-Colom P, Romeu AB, De Juan J. Estudio de las alteraciones morfológicas de espermatozoides humanos con microscopia electrónica de barrido (SEM). Rev Iberoamer Fertil 2005; 22(1):59-66.
[4] Lodish H, Berk A, Matsudaira P, Kaiser C, Krieger M, Scott M, Zipursky L, Darnell J. Biología Celular y Molecular. Quinta edición pp 79-80.
[5] Mortimer S. A critical review of the physiological importance and analysis of sperm movement in mammals. Hum Reprod Update. 1997; 3(5):403-439.
[6] Kamp G, Schmidt H, Stypa H, Feiden S, Mahling C, Wegener G. Regulatory properties of 6-phosphofructokinase and control of glycolysis in boar spermatozoa. Reproduction 2007; 133: 29-40.
[7] Turner, R. M. Moving to the beat: a review of mammalian sperm motility regulation. Reprod Fertil Dev 2006; 18:25–38.
[8] Van C, Hutson S, Lardy H. Pyruvate metabolism in bovine epididymal spermatozoa. J Biol Chem 1977; 252:1303-1308.
[9] Storey B. Mammalian sperm metabolism: oxygen and sugar, friend and foe. Int. J Dev Biol 2008; 52: 427-437.
[10] Mukai C, Okuno M. Glycolysis plays a major role for adenosine triphosphate supplementation in mouse sperm flagellar movement. Biol Reprod 2004; 71: 540-547.
[11] Narisawa S, Hecht N, Goldberg E, Boatright K, Reed J, Millán J. Testis-specific cytochrome c-Null mice produce functional sperm but undergo early testicular atrophy. Mol Cell Biol 2002; 22 (15): 5554-5562.
[12] Storey B, Kayne F. Energy metabolism of spermatozoa. VI. Direct intramitochondrial lactate oxidation by rabbit sperm mitochondria. Biol Reprod 1977; 16: 549-556.
[13] Ferramosca A, Vincenzo Z. Bioenergetics of Mammalian Sperm Capacitation. BioMed Res International 2014; 1: ID 902953, http://dx.doi.org/10.1155/2014/902953
[14] Suarez S, Ho, H. Hyperactivation of mammalian sperm. Cell Mol Biol 2003; 49, 351–356.
[15] Goodson S, Qiu Y, Sutton K, Xie G, Jia W, O’Brien D. Metabolic Substrates Exhibit Differential Effects on Functional Parameters of Mouse Sperm Capacitation. Biol Reprod 2012; 87(3):75, 1-15.
[16] Rodríguez Tr, Arenas-Ríos E, León-Galván M. El almacenamiento prolongado de espermatozoides en el epidídimo, adaptación que permite sincronizar el periodo de apareamientos en murciélagos. Contactos. 2010; 78: 58-64
[17] Yuan S, Zheng H, Zheng Z, Yan W. Proteomic Analyses Reveal a Role of Cytoplasmic Droplets as an Energy Source during Epididymal Sperm Maturation. PLOS ONE. 2013; 8 (10)-e77466. doi:10.1371/journal.pone.0077466
[18] McCarrey J, Thomas K. Human testis-specific PGK gene lacks introns and possesses characteristics of a processed gene. Nature. 1987; 326(6112):501-505.
[19] Levine N and Marsh D. Micropuncture studies of the electrochemical aspects of fluid and electrolyte transport in individual seminiferous tubules, the epididymis and the vas deferens in rats. J Physiol 1971; 213: 557-570.
[20] Regalado F. Proteínas de secreción del epidídimo de conejo caracterización y regulación por andrógenos y temperatura. Tesis Doctoral. Madrid. Universidad Complutense de Madrid Departamento de Biología Molecular. 1992.
[21] Barrios D. Evaluación de la Calidad y capacidad fecundante de espermatozoides de la cola del epidídimo de toros post-mortem. XI congreso venezolano de producción e industria animal. 2002. Octubre 26; Valera, Venezuela
[22] Jones R, Murdoch R. Regulation of the motility and metabolism of spermatozoa for storage in the epididymis of eutherian and marsupial mammals. Reprod Fertil Dev 1996; 8(4) 553-568.
[23] Breton S, Smith P, Brown D. Acidification of the malereproductive tract by a proton pumping (H+)-ATPase. Nature medicine. 1996; (2): 470-472.
[24] Storey B, Kayne F. Energy metabolism of spermatozoa. V. The Embden-Myerhof pathway of glycolysis: activities of pathway enzymes in hypotonically treated rabbit epididymal spermatozoa. Fertil Steril 1975; 26(12):1257-1265.
[25] Beu C, Orsi A, Domeniconi R, Novelli E. Localization of total proteins and lactate dehydrogenase in hamster pididymis Int J Morphol, 2007; 25(2):259-264.
[26] Storey B, Kayne F. Energy metabolism of spermatozoa. VU. Interactions between lactate, pyruvate and malate as oxidative substrates for rabbit sperm mitochondria. Biol Reprod 1978;18:527-536.
[27] Somanath P, Jack S, Vijayaraghavan S. Changes in sperm glycogen synthase kinase-3 serine phosphorylation and activity accompany motility initiation and stimulation. J Androl. 2004 ;25(4):605-617.
[28] Vásquez F, Vásquez D. Espermograma y su utilidad clínica. Salud Uninorte 2007; 23 (2): 220-230.
[29] Campbell-Walsh. Urology. Novena edición. Edit Panamericana, España-Madrid. 2007. pp 2618-2617.
[30] Hall J. Tratado de Fisiología Médica: Capítulo 80 Funciones reproductoras y hormonales masculinas. Décima segunda edición, 2011. España. Edit Elservier.
[31] De Pauw I. Bovine semen preservation under epididymal conditions and assessment of sperm quality by means of a sperm-oviduct binding assay. Tesis Doctoral. Faculteit Diergeneeskunde. Vakgroep Voortplanting, Verloskunde en Bedrijfsdiergeneeskunde. 2003.
[32] Madrano A. Estudio del metabolismo energético de los espermatozoides porcinos y su repercusión en el diseño de diluyentes optimizados para la conservación de semen refrigerado. Tesis doctoral. Facultad de Veterinaria-Universidad Autónoma de Barcelona-España. 2005.
[33] Wennemuth G, Carlson A, Harper A, Babcock D. Bicarbonate actions on flagellar and Ca2+-channel responses: initial events in sperm activation. Development 2003; 130(7): 1317-1326.
[34] Carrera A, Moos J, Ping N, Gerton G, Tesarik J, Kopf G, Moss S. Regulation of protein tyrosine phosphorylation in human sperm by a calcium/calmodulin-dependent mechanism: Identification of a kinase anchor proteins as major substrates for tyrosine phosphorylation. Dev Biol 1996; 180: 284-296.
35 Battistone M, Da Ros V, Salicioni A, Navarrete F, Krapf D, Visconti P, Cuasnicu P. Functional human sperm capacitation requires both bicarbonate-dependent PKA activation and down-regulation of Ser/Thr phosphatases by Src family kinases. Mol Hum Reprod. 2013; 19(9): 570-580.
[36] Westbrook V, Chertihin O, Demarco I, Sleight S, Diekman A. Novel signaling pathways involved in sperm acquisition of fertilizing capacity. J Reprod Immunol. 2002; 53:133-150.
[37] Anzaldúa S, Pérez M, Cerbón M, Camacho-Arroyo I. Actividad secretora del oviducto de mamíferos domésticos durante la fertilización y el desarrollo embrionario temprano. Cs Vet 2003; 9:229-267.
[38] Ciancio M, Orlowski A, Lembo J, Aiello E. La asociación funcional de la adenilato ciclasa soluble (sAC) y el cotransportador sodio/bicarbonato (NBC) conforma una simbiosis reguladora de la contractilidad basal cardíaca. Jornadas de Medicina 2012. Facultad de Ciencias Médicas: La Plata, Argentina.
[39] Ying L, Deng-Ke W, Li-Ming C. The physiology of bicarbonate transporters in mammalian reproduction. Biol Reprod 2012; 86(4):99, 1-13.
[40] Wang D, Hu J, Bobulescu A, Quill T. McLeroy P, Moe O, Garbers D. A sperm-specific Na_/H_ exchanger (sNHE) is critical for expression and in vivo bicarbonate regulation of the soluble adenylyl cyclase (sAC). PNAS 2007; 104(22):9325-9330.
[41] Carlson A, Quill T, Westenbroek R, Schuh S, Hille B, Babcock D. Identical phenotypes of CatSper1 and CatSper2 Null Sperm. J Biol Chem 2005; 280: 3238-3244.
[42] Brenker C, Zhou Y, Müller A, Echeverry F, Trötschel C, Poetsch A, Xia X, Bönigk W, Lingle C, Kaupp B, Strünker T. The Ca2+-activated K+ current of human sperm is mediated by Slo3. eLife 2014; 3. http://dx.doi.org/10.7554/eLife.01438.001
[43] Xu-Hui Z, Chengtao Y, Tae K, C Lingle C, Xiao-Ming X. Deletion of the Slo3 gene abolishes alkalizationactivated K+ current in mouse spermatozoa. PNAS; 2011; 108(14): 5879-5884.
[44] Signorelli J, Díaz E, Fara K, Barón L, Morales P. Protein phosphatases decrease their activity during capacitation: A new requirement for this event, PLOS ONE 2013; 8(12): e81286.
[45] Aitken R, Harkiss D, Knox W, Paterson M, Irvine D. A novel signal transduction cascade in capacitating human spermatozoa characterized by a redox-regulated, cAMP-mediated induction of tyrosine phosphorylation. J Cell Sci 1998; 111: 645–656.
[46] Vilanova L, Rauch T, Zambrano C, Brito M, Werner E, Concha I. Caracterización funcional y localización del receptor GM-CSF en espermatozoides bovinos. Arch Med Vet. 2003; 35(2): 139-150.
[47] Ocampo M. Localización de transportador de glucosa GLUT 3 y el receptor GM-CSF en estructuras tipo caveolas. Tesis de Licenciatura en Bioquímica. Instituto de Bioquímica Facultad de Ciencias. Valdivia-Chile. 2004. http://cybertesis.uach.cl/tesis/uach/2004/fco.15l/pdf/fco.15l.pdf.
[48] Santoro M, Guido C, De Amicis F, Sisci D, Vizza D, Gervasi S, Carpino A, Aquila S. Sperm metabolism in pigs: a role for peroxisome proliferator-activated receptorgamma (PPARγ) J Exper Biol 2013; 216, 1085-1092.
[49] Aitken R , Kelly R. Analysis of the direct effects of prostaglandins on human sperm function. J Reprod Fertil 1985; 73, 139-146.
[50] Aitken R, Irvine S and Kelly R. Significance of intracellular calcium and cyclic adenosine 3′,5′-monophosphate in the mechanisms by which prostaglandins influence human sperm function. J Reprod Fertil 1986; 77, 451-462.
[51] Bendvold E, Gottlieb C, Svanborg K, Bygdeman M, Eneroth P. Concentration of prostaglandins in seminal fluid of fertile men. Int J Androl 1987; 10: 463-946.
[52] Mckee T, Mckee J. 2009. Bioquímica las bases moleculares de la vida: Metabolismo de los carbohidratos. Cuarta edición. Editorial Mc Graw Hill. México DF. pp 290-292.
[53] Domínguez A. Estudio del estrés oxidativo en espermatozoides epididimarios criopreservados de ciervo (Cervus elaphus). Tesis Doctoral. Universidad de Castilla-La Mancha Instituto de Investigación en Recursos Cinegéticos. Departamento de Ciencia y Tecnología Agroforestal y Genética. 2010.
[54] Suhaiman L, Giner F, Pelletán L, De Blas G, Mayorga, L Belmonte S. La actividad de esfingosina quinasa es requerida en una nueva vía de señalización que conduce a la exocitosis acrosomal del espermatozoide humano. 2010. XI Jornadas Virtuales de Investigación de la Facultad de Ciencias Médicas, Universidad Nacional de Cuyo. 2010; Cuyo, Argentina
[55] Castillo J, Mancifesta F, Mayorga L. Calcineurina es necesaria para la exocitosis acrosomal en espermatozoides humanos. XI Jornadas Virtuales de Investigación de la Facultad de Ciencias Médicas, Universidad Nacional de Cuyo. 2010; Cuyo, Argentina
[56] Soler O, Castillo J, Mayorga L. Caracterización de la interacción entre complexina y sinaptotagmina. XI Jornadas Virtuales de Investigación de la Facultad de Ciencias Médicas, Universidad Nacional de Cuyo. 2010; Cuyo, Argentina.
[57] Ramón Mª, Casis L. Múgica J. Estudio de la actividad minopeptidásica en espermatozoides astenozoospérmicos. Tesis Doctoral. Facultad de Medicina y Odontología Departamento de Fisiología, Servicio Editorial de la Universidad del País Vasco Euskal Herriko Unibertsitateko Argitalpen Zerbitzua ISBN: 978-84-694-6815-9. Recuperado: 22-07-2014. Http://www.ehu.es/argitalpenak/images/stories/tesis/Ciencias_de_la_Vida/Estudio%20de%20la%20actividad%20aminopeptidasica%20en%20espermatozoides%20astenozoospermicos.%20Comparacion%20clinica.pdf
[58] Töpfer-Petersen E, Wagner A, Friedrich J, Petrunkina A, Waberski D, Drommer W . Function of the mammalian oviductal sperm reservoir. J Exp Zool 2002; 292: 210–215.
[59] Travis A, Jorgez C, Merdiushev T, Jones B, Dess D, Diaz-Cueto L, Storey B, Kopf G, Moss S. Functional relationships between capacitation-dependent cell signaling and compartmentalized metabolic pathways in murine spermatozoa. J Biol Chem 2001; 276: 7630–7636.
[60] Jones A, Connor D. Control of glycolysis in mature boar spermatozoa: effect of pH in vitro. Reprod Fertil Dev. 2004; 16: 319–324.

Publicado

2015-07-19

Cómo citar

Flores, C., & Vilanova, L. (2015). Metabolismo espermático. Gaceta De Ciencias Veterinarias, 20(1), 23-32. Recuperado a partir de https://revistas.uclave.org/index.php/gcv/article/view/892

Número

Sección

Artículo de revisión