SOFTWARE FOR DESIGNING PREQUALIFIED SIMPSON STRONG-TIE STRONG FRAME CONNECTIONS IN MOMENT RESISTING STEEL PORTAL FRAMES ACCORDING TO ANSI/AISC 358-16

Jesús María, Saldivia Manfredil¹; Gino, Pannillo²

Recibido 05/09/2023: Aprobado: 11/11/2023

DOI: https://doi.org/10.51372/gacetatecnica251.4

RESUMEN

En este trabajo se ha desarrollado un programa para el diseño de conexiones precalificadas tipo *Simpson Strong-Tie Strong Frame* de acuerdo a los requerimientos normativos *AISC*, y dentro de los límites de precalificación y procedimiento contemplados en la norma *ANSI/AISC 358-16*. Para desarrollar el programa se utilizó el software *MATLAB* en su versión R2014a, específicamente en su entorno GUIDE para el diseño de las interfaces gráficas y su respectiva programación. El programa, llamado *CONESTRONG* (CONExiones precalificadas Simpson STRONG-Tie STRONG Frame), facilita en gran medida el diseño de este tipo de conexión, debido a que realiza automáticamente la verificación del cumplimiento de los diferentes requisitos normativos orientando al usuario durante el proceso con varias sugerencias. El diseño obtenido con el programa fue comparado con el de un ejemplo desarrollado de manera manual, con resultados satisfactorios.

Palabras clave: conexiones precalificadas; Simpson Strong-Tie Strong Frame; AISC; MATLAB; ANSI/AISC 358-16; CONESTRONG

¹Jesús María, Saldivia Manfredil. Ingeniero Civil. Universidad Centroccidental Lisandro Alvarado. Venezuela Correo: jesusmsm86@gmail.com ORCID: <u>https://orcid.org/0009-0008-7471-5929</u>

²Gino, Pannillo. Docente Investigador en la Universidad Centroccidental Lisandro Alvarado, Venezuela. Ingeniero Civil. Magister en Mecánica Aplicada en la Construcción. Correo: <u>gino.pannillo@ucla.edu.ve</u>. ORCID: <u>https://orcid.org/0000-0003-3539-0128</u>

ABSTRACT

In this work, a program has been developed for the design of prequalified Simpson Strong-Tie Strong Frame type connections in accordance with the AISC regulatory requirements and within the prequalification and procedure limits contemplated in the ANSI/AISC 358-16 standard. To develop the program, was used the MATLAB software in its R2014a version, specifically its GUIDE environment for the design of the graphical interfaces and their respective programming. The program called CONESTRONG (Simpson STRONG-Tie STRONG Frame Prequalified Connections), greatly facilitates the design of this type of connection, because it automatically verifies compliance with the various regulatory requirements and guides the user during the process with several suggestions. The results obtained with the program were compared with those of an example developed manually, with satisfactory results.

Keywords: prequalified connections; Simpson Strong-Tie Strong Frame; AISC; MATLAB; ANSI/AISC 358-16; CONESTRONG

1. INTRODUCCIÓN

El sismo de Northridge, California en 1994 [1], produjo numerosas fallas en las conexiones de las estructuras de acero en la zona afectada, causando fuerte preocupación, lo que implicó llevarse a cabo una investigación federal en Estados Unidos con la finalidad de encontrar las causas que originaron estas fallas y evitar que situaciones similares se presenten en el futuro. El resultado, es la proyección de nuevos criterios para el diseño de estructuras sismorresistentes en zonas de amenaza sísmica, siendo los códigos estadounidenses de ANSI/AISC los que recogen estas recomendaciones y sirven como fundamento en sus publicaciones desde el año 2005. El código ANSI/AISC 358-16 [2], guía el diseño de distintas conexiones precalificadas para estructuras de acero sismorresistentes, siendo una de ellas la *Simpson Strong-Tie Strong Frame*.

El procedimiento de diseño de este tipo de conexión es largo y complejo debido a la cantidad de requisitos normativos que deben cumplirse. Es por ello, que el trabajo presentado en este artículo, consistió en desarrollar un programa que permita diseñar conexiones precalificadas tipo *Simpson Strong-Tie Strong Frame* entre vigas y columnas de pórticos de acero resistentes a momento, conforme a los requerimientos del código ANSI/AISC 358-16 [2], utilizando el software MATLAB.

2. DESARROLLO

2.1. Conexiones Precalificadas

Actualmente para el diseño de estructuras de acero, el código AISC dentro de sus provisiones sísmicas, establece una serie de requisitos específicos para sistemas estructurales con capacidad moderada y especial de disipación de energía, dentro de los cuales se encuentran

estrictas exigencias para las conexiones de los miembros. Para evitar el costoso y difícil proceso de calificación, mediante el cual se garantice que las conexiones a utilizar en un proyecto cumplen con los requisitos de AISC 341 [3], y ha sido sometida a pruebas experimentales, la norma permite la utilización de las conexiones precalificadas del código AISC 358 [2]. En su más reciente publicación del año 2016, el código AISC 358 considera las siguientes conexiones precalificadas:

- Sección de viga reducida (RBS)
- Plancha extrema extendida apernada sin rigidizadores (BUEEP)
- Plancha extrema extendida apernada con rigidizadores (BSEEP)
- Plancha de ala apernada (BFP)
- Ala soldada sin refuerzo-alma soldada (WUF-W)
- Kaiser ménsula apernada (KBB)
- Conexión resistente a momento ConXtech ConXL (ConXL)
- Conexión resistente a momento SidePlate (SidePlate)
- Conexión resistente a momento Simpson Strong-Tie Strong Frame
- Conexión resistente a momento Doble-Tee

2.2. Conexión Resistente a Momento Simpson Strong-Tie Strong Frame

La conexión resistente a momento *Simpson Strong-Tie Strong Frame* es de tipo semirrígida que utiliza una conexión de cortante modificada mediante placa de cortante única, para transferencia de fuerza cortante y una conexión T-stub modificada el cual sería el fusible estructural *Yield-Link* para transferencia de momento, como se muestra en la Figura 1.

Figura 1. Vista tridimensional de la configuración de la conexión Simpson Strong-Tie. Fuente: [4].

<u>Revista Gaceta Técnica</u>. Artículo de Investigación. 25(1), 51-77, enero-junio, 2024 ISSN: 2477-9539

Las conexiones de las piezas *T-stub* modificada, las cuales se unen mediante pernos a las alas de la viga y de la columna, están configuradas como uniones cedentes y contienen un área reducida de cedencia en su alma cuyo pandeo local a compresión se evita mediante la instalación de planchas para restricción de pandeo. La conexión está basada en el enfoque de diseño por capacidad, donde la respuesta de la conexión se mantiene dentro del rango elástico bajo la combinación de cargas factorizadas, y la demanda de rotación inelástica sísmica está confinada predominantemente dentro de la conexión, con poco o nulo comportamiento inelástico esperado en las vigas y columnas [4].

Procedimiento de diseño de la conexión Simpson Strong-Tie Strong Frame

- Paso 1. Elegir los perfiles para vigas y columnas de acuerdo con los límites de precalificación de la sección 12.3 del código AISC 358 asumiendo conexiones rígidas entre los miembros y considerando todas las combinaciones de carga especificadas por las normas de diseño aplicables. Estimar la deriva de entrepiso de diseño para el cumplimento de los limites aplicables especificados por la norma de diseño como 1,2 veces más grande que el valor calculado al asumir conexiones rígidas
- Paso 2. Chequear la resistencia y deflexión de la viga asumiendo que esta se encuentra simplemente apoyada entre las conexiones de placa de cortante. Chequear la resistencia de la viga para las combinaciones de cargas verticales aplicables según la norma de diseño. Verificar que la deflexión de la viga bajo la acción de cargas permanentes y variables sea menor a *Lh*360/, donde *Lh* es la longitud de la viga entre los centros de los pernos de las placas de cortante a cada extremo de la viga
- Paso 3. Estimar la resistencia a la cedencia requerida de la pieza *Yield-Link* de acuerdo al Paso 1
- Paso 4. Determinar el ancho y largo de la sección no reducida de la pieza *Yield-Link* del lado de la columna
- Paso 5. Determinar el ancho del área de cedencia del alma de la pieza *Yield-Link*, *byield*, donde el espesor del alma de la pieza Yield-Link, *tstem*, debe tomarse como 13mm.
- Paso 6. Determinar la longitud mínima del área de cedencia del alma de la pieza *Yield-Link*, *Ly–link* de tal manera que la deformación axial de la porción recta de la pieza sea menor o igual a 0,085mm/mm para 0,05 rad de rotación en la conexión
- Paso 7. Calcular la tensión cedente esperada y la tensión máxima probable de la pieza *Yield-Link*
- Paso 8. Determinar el ancho no reducido, *bbm-side*, y longitud *Lbm-side* del lado de la viga de la pieza *Yield-Link* utilizando el valor de *Pr-link* del Paso 7
- Paso 9. Diseñar la conexión entre el ala de la pieza *Yield-Link* y el ala de la columna utilizando el valor de Pr_{-link} obtenido en el Paso 7

- Paso 10. Seleccionar la plancha para restricción de pandeo (BRP) de acuerdo a la sección 12.8.6 del código AISC 358
- Paso 11. Verificar la deriva elástica del pórtico y la demanda de momento de la conexión considerando la rigidez real de la conexión
- Paso 12. Determinar la resistencia a corte requerida, Vu, de la viga y de la conexión entre el alma de la viga y el ala de la columna
- Paso 13. Verificar los perfiles de viga y columna seleccionados en el Paso 1
- Paso 14. Chequear las limitaciones para la relación viga-columna de acuerdo a la sección 12.4 del código AISC 358
- Paso 15. Diseñar la conexión entre el alma de la viga y el ala de la columna para las siguientes resistencias requeridas
- Paso 16. Chequear la resistencia a corte en la zona panel de la columna de acuerdo al código AISC 360. La resistencia a corte requerida debe ser determinada a partir de la suma de las resistencias axiales máximas probables de la pieza *Yield-Link*. Las planchas adosadas al alma de la columna deben utilizarse de acuerdo a lo requerido
- Paso 17. Chequear el alma de la columna para fuerzas concentradas de Pr_{-link}, de acuerdo al código AISC 360
- Paso 18. Chequear el espesor mínimo del ala de la columna para cedencia a la flexión
- Paso 19. Si las planchas de continuidad o rigidizadores son requeridos por alguno de los estados límites de la columna en los Pasos 17 y 18, la resistencia requerida, *Fsu*

3. METODOLOGÍA

El marco metodológico está orientado al diseño no experimental, se realizó siguiendo el procedimiento de desarrollo de las conexiones precalificadas *Simpson Strong-Tie Strong Frame*. Para la programación y desarrollo del algoritmo, se empleó el programa *MATLAB* (https://www.mathworks.com/products/matlab-online.html).

• Fase 1: estudio de MATLAB

Como paso inicial se estudiaron las opciones que ofrece el software en su lenguaje de programación, con la finalidad de adaptar el procedimiento de diseño de la conexión descrito en el código ANSI/AISC 358-16 [2] a los algoritmos que conformarían el programa de la manera más eficiente y sencilla posible. Igualmente se estudió el entorno GUIDE (Graphical User Interface Development Environment), herramienta disponible en *MATLAB*, para poder diseñar y crear la interfaz de usuario que permitirá el uso del programa.

• Fase 2: desarrollo de algoritmo

Se procedió a escribir los algoritmos que permitirán llevar a cabo el proceso de cálculo <u>Revista Gaceta Técnica</u>. Artículo de Investigación. 25(1), 51-77, enero-junio, 2024 ISSN: 2477-9539

necesario para el diseño de la conexión. Esta fase se ejecutó conjuntamente al proceso de diseño y creación de la interfaz de usuario, la cual debe programarse para que trabaje adecuadamente con los datos y comandos que ingrese el usuario al programa.

• Fase 3: validación de resultados

Para validar los resultados obtenidos con el programa creado se realizó el diseño de una conexión tipo *Simpson Strong-Tie Strong Frame* de manera manual. La diferencia porcentual entre los resultados obtenidos se calculó mediante la siguiente ecuación utilizada en distintas investigaciones [5], [6], [7] y [8]:

<u>Revista Gaceta Técnica</u>. Artículo de Investigación. 25(1), 51-77, enero-junio, 2024 ISSN: 2477-9539 COOO En la Figura 2 se muestra un diagrama general del funcionamiento del programa para el diseño de la conexión *Simpson Strong-Tie Strong Frame*.

4. RESULTADOS

El programa diseñado llamado CONESTRONG, guía al usuario durante el proceso de diseño de la conexión, suministrando información sobre las distintas limitaciones normativas y realizando los chequeos requeridos en cada una de las partes que la conforman. El software permite diseñar la conexión mediante el ingreso de los datos en las distintas interfaces y visualizar los resultados tanto gráficamente como a través de un reporte que muestra toda la información del diseño definitivo y los chequeos realizados durante el proceso.

Menú principal. Se encuentra disponible en todas las interfaces y consiste en los siguientes menús desplegables:

- Archivo: contiene las funciones básicas Nuevo, Abrir, Guardar, Guardar como y Salir
- Normas AISC 2016: permite al usuario consultar las normas AISC 341-16 (disposiciones sísmicas para edificios de acero estructural), AISC 358-16 (conexiones precalificadas para pórticos de acero resistentes a momento especiales e intermedios para aplicaciones sísmicas), y AISC 360-16 (especificación para edificios de acero estructural)
- Ayuda: ofrece opciones para visualizar el procedimiento de diseño paso a paso, muestra los cálculos detallados del procedimiento de diseño; mostrar información básica del programa; y para abrir el manual de usuario.

Interfaz gráfica. La primera interfaz (Figura 3), que se abre cuando se ejecuta el programa, contiene la imagen de presentación que muestra parte de una estructura unida mediante una conexión tipo *Simpson Strong-Tie Strong Frame* y el nombre del software.

Figura 3. Primera interfaz gráfica. Fuente: los autores

En la parte inferior derecha se encuentran los cuatro botones que permiten seleccionar el tipo

de nodo con el que se desea trabajar. Estas opciones son: Nodo de borde (último piso), Nodo de borde (piso intermedio), Nodo interno (último piso), Nodo interno (piso intermedio).Una vez seleccionado el tipo de nodo, se despliega la segunda interfaz (ver Figura 4), en la que se pueden ingresar los datos de los perfiles de viga y columna y sus respectivos materiales. Las opciones disponibles en los menús contienen solo los perfiles que cumplen con los límites de precalificación, es por esto que no se incluyen perfiles de viga con altura mayor a 420mm o espesor de ala menor a 10mm ni perfiles de columna con altura mayor a 476mm.

Figura 4. Segunda interfaz gráfica. Fuente: los autores

Seguidamente aparecen ventanas para trabajar con las vigas:

- Chequeo de los límites de precalificación
- Propiedades del acero
- Panel con propiedades del perfil seleccionado

El panel de la columna tiene las mismas características que el de las vigas, pero incluye una casilla que se debe seleccionar en caso de que se realice el diseño para una columna empotrada en la base con rotación limitada en sus extremos, con la finalidad de que el programa realice el chequeo de los límites de precalificación correspondientes.

En la tercera interfaz (ver Figura 5) se incluyen inicialmente las cajas de texto para ingresar los datos de *Mu* (momento de diseño de la conexión), *CP* y *CV* (carga permanente y carga variable actuando en la viga, respectivamente). Si el valor del momento ingresado es muy grande y los requisitos de las dimensiones de la pieza *Yield-Link* superan los máximos precalificados, el programa muestra un mensaje para informarlo. A la derecha se encuentra el panel que contiene todo lo referente al diseño de la pieza *Yield-Link*; es aquí donde inicialmente se puede seleccionar el material de la pieza y las distintas dimensiones del alma de ésta.

Jesús María, Saldivia Manfredil; Gino, Pannillo

Figura 5. Tercera interfaz gráfica. Fuente: los autores

A medida que se van ingresando los datos, el programa calcula y muestra en la interfaz las fuerzas de diseño (ver Figura 6). La nomenclatura utilizada en el programa corresponde a la utilizada en el procedimiento de diseño de la sección 12.9 de la norma ANSI/AISC 358-16. Posteriormente aparece el diseño de la conexión (ver Figura 7).

Mu =	9000	kgf*m
P'(y-link	:) = 27778 k	gf
P(ye-lin	k) = 35215	kgf
P(r-link)	= 45933 kg	af

Figura 6. Fuerzas de diseño calculadas por el programa. Fuente: los autores

Grado de pernos:	Seleccione el grado 👻	sc =		mm		- L(bm-side) - sc s(stem)s(stem) sb
		s(stem) =		mm	1.1	+
Diámetro <mark>d</mark> e pernos:	Seleccione el diámetro 👻	sh =		mm	-(ple	
					p(yie	g(ste
Número de pernos:	0	h =	-	mm	1-1	
		L(bm_side) =	0	mm		
		g(stem) =	0	mm		Chequear la conexión

Figura 7. Fuerzas de diseño calculadas por el programa. Fuente: los autores

En la parte inferior derecha de este panel se encuentra el botón "Chequear la conexión". Al hacer clic sobre éste, se abre una ventana auxiliar que muestra el chequeo de cada uno de los estados límite que se deben estudiar en esta parte de la conexión. Es necesario pulsar este botón para poder habilitar los componentes del panel inferior, esto para ayudar al usuario a ingresar los datos en el orden adecuado. Si la conexión no tiene la resistencia requerida para alguno de los casos de falla, se puede cerrar la interfaz auxiliar, modificar los datos ingresados según sea necesario y volver a pulsar el botón para revisar los nuevos valores calculados.

4.2. Ejemplo de Aplicación con Conexión Simpson Strong-Tie Strong Frame

Se inicia el diseño seleccionando la opción de nodo de borde en la primera interfaz para luego especificar los perfiles y materiales de los miembros. Se selecciona IPE-360 para la viga y HEB-400 para la columna, y acero ASTM A572 Grado 50 para los dos miembros, visualizado en la segunda interfaz (ver Figura 8).

	AISC 2016	Ayuda							
– Viga—									
Perfil de	la Viga: IPE	-360		Límites de	precalificació				
				1					
Acero de	e la Viga: [AS	TM A572 Gra	do 50 👻	Propieda	des del acero				
	- Propie	dades del per	fil						
	Altu	ra	d =	360 mm					IPE-360
	Espe	esor del ala	tf =	12.7 mm					
	Espe	esor del alma	tw =	8.0 mm					
	Área	1	A =	72.70 cm2					
	Peso	5		57.10 kgf/m				HEB-400	
		Vertod	lae lae propiedar	lee					
		V C1 100	ias ias propicad						
	Perfil de la	a Columna:	HEB-400		✓ Límites	de precalificación	Colu	umna de primer pis	0
	Perfil de la	a Columna: la Columna: Pronie	HEB-400	irado 50	 Límites Propie 	de precalificación	Colu	umna de primer pise	0
	Perfil de la	a Columna: la Columna: Propie Altur	HEB-400 ASTM A572 G dades del perfil- ra	irado 50 d = 4	Límites Propie	de precalificación edades del acero	Colu	umna de primer piso	0
	Perfil de la	a Columna: la Columna: Propie Altur Ancl	HEB-400 ASTM A572 G dades del perfil- ra ho del ala	irado 50 d = 4 bf = 4	Limites Propie	de precalificación	Colu	umna de primer piso	0
	Perfil de la	a Columna: la Columna: Propie Altur Ancl Espe	HEB-400 ASTM A572 G dades del perfil- ra ho del ala esor del ala	d = 4 d = 4 d = 1 d = 1	Límites Propie	de precalificación	Colu	COLUMNA	0
	Perfil de la	a Columna: la Columna: Propie Altur Ancl Espe	HEB-400 ASTM A572 C dades del perfil- ra ho del ala esor del ala asor del ala	d = 4 d = 4	Límites Propie	de precalificación adades del acero	Colu	uma de primer pisu	0
	Perfil de la	a Columna: la Columna: Propie Altur Ancl Espe Espe Área	HEB-400 ASTM A572 C dades del perfil- ra ho del ala esor del ala esor del ala	d = 4 bf = 2 tf = 2 tw = 4	Limites Propie Propie O0 mm 000 mm 24.0 mm 13.5 mm 198.00 cm2	de precalificación adades del acero	Colu	umna de primer pise	0
	Perfil de la	a Columna: la Columna: Propie Altur Anci Espe Éspe Área Pesc	HEB-400 ASTM A572 C dades del perfil- ra ho del ala esor del ala asor del alma a	d = 4 bf = 2 tf = 2 tw = 4	Limites Limites Propie Prop	de precalificación adades del acero	Colu		0
	Perfii de la	a Columna: la Columna: Propie Attur Ancl Espe Éspe Área Pesc	HEB-400 ASTM A572 C dades del perfil- ra ho del ala esor del ala esor del ala a v	d =	Limites Propie Propi	de precalificación adades del acero	Colu	o Contrave	0
	Perfil de la	a Columna: la Columna: Propie Attur Ancl Espe Éspe Área Pesc	HEB-400 ASTM A572 C dades del perfil- ra ho del ala assor del ala assor del ala assor del alma a v Ver todas	d = 4 bf = 2 tf = 2 tw = 4 A = 1 las propiedade	Limites Propie Propi	de precalificación	Colu	COUNTRY	0
	Perfil de la	a Columna: la Columna: Propie Altur Anci Espe Éspe Área Pesc	HEB-400 ASTM A572 C dades del perfil- ra ho del ala assor del ala assor del ala assor del alma a Ver todas	d = d d = d d = tf = tr tw = A = d las propiedado	Limites Propie Propi	de precalificación	Colu	umna de primer pise	0
☑ Usar el n	Perfil de la Acero de	a Columna: la Columna: Propie Altur Anci Espe Éspe Áree Pesc	HEB-400 ASTM AS72 C dades del perfil- ra ho del ala asor del ala asor del ala asor del alma a v Ver todas	rado 50 d = 4 bf = 2 tf = 2 tw = 4 A = 1 las propiedade	Limites Propie Propi	de precalificación dades del acero	Colu	uma de primer piso	o

Figura 8. Ingreso de datos en la segunda interfaz. Fuente: los autores

En la tercera interfaz se introduce inicialmente el momento último de diseño de la conexión (Mu) y las cargas uniformemente distribuidas que actúan en la viga. Seguidamente se inicia el

diseño de la pieza *Yield-Link*. Se selecciona acero ASTM A572 Grado 50 para la pieza. Se continúa el diseño ingresando los valores para *a*, *bcol–side*, *bbm–side*, *Lcol–side*, *byield* y *Ly–link* (ver Figura 9).

Figura 9. Ingreso de datos para diseñar la pieza Yield-Link. Fuente: los autores

Luego se diseña la conexión entre el alma de la pieza Yield-Link y el ala de la viga. Inicialmente se elige el grado de pernos y diámetro. El programa calcula automáticamente el número de pernos requeridos para soportar la fuerza axial. Seguidamente se ingresan los datos de *sc*, *sstem*, *sb* y *h*, y con esto el programa calcula y muestra los valores de *Lbm-side* y *gstem*. Una vez ingresados todos los valores, se hace clic en el botón "Chequear la conexión" para verificar que el alma de la pieza *Yield-Link* y el ala de la viga tienen la resistencia suficiente para soportar la fuerza de diseño Pr-link. Se ve que todos los controles cumplen.

En este punto se comienza a diseñar la conexión entre el ala de la pieza *Yield-Link* y el ala de la columna. Se inicia con la selección del grado de pernos y el diámetro mayor al mínimo requerido para soportar la fuerza de diseño *rt* mostrado a la derecha del menú. Luego se ingresa la altura del ala de la pieza *Yield-Link* y las distancias al borde vertical y horizontal. A la derecha de cada casilla se especifica la distancia al borde mínima que se debe cumplir según el diámetro.

Con todos los datos anteriores ingresados, el programa calcula y muestra el espesor mínimo que debe tener el ala de la pieza para evitar el efecto de apalancamiento. Se selecciona un espesor mayor al mínimo (ver Figura 10). Se hace clic en el botón "Chequear la conexión" para verificar que cuenta con la resistencia adecuada. Como el acero seleccionado para la pieza es ASTM A572 Grado 50, se debe diseñar la soldadura en el panel de la interfaz dispuesto para ello: "Soldadura Ala-Alma pieza Yield-Link". Se selecciona soldadura de filete doble con un tamaño de 20mm. Seguidamente se diseña el sistema de restricción de pandeo que sirve para evitar tal efecto en el alma de la pieza *Yield-Link*. Se selecciona el mismo tipo de acero de la pieza para la plancha para restricción de pandeo, especificando la longitud de la placa, mayor al mínimo requerido que se muestra a la derecha. Luego se selecciona el grado y diámetro de pernos para la unión del sistema con el ala de la viga; finalmente se especifica el acero de los espaciadores y su ancho (ver Figura 11).

Figura 11. Diseño del sistema para restricción de pandeo. Fuente: los autores

Haciendo clic en el botón "Parámetros de rigidez de la conexión" se pueden visualizar la información para conocer la rigidez real de la conexión. En esta ventana auxiliar se muestra también el momento resistente de la conexión. Se verifica que éste es mayor o igual a Mu. Solo resta calcular la fuerza Vu antes de avanzar a la siguiente interfaz. Se ingresa el valor de la distancia entre las líneas de agujeros para pernos a ambos extremos de la viga Lh=6-dc-2a=5,46m. Se introduce un valor de 1,6 para el factor que multiplica a la carga variable para calcular la carga Q. El programa calcula automáticamente Vu y muestra el valor. Se hace clic en "Siguiente" para avanzar a la siguiente interfaz (ver Figura 12).

Figura 12. Cálculo de fuerza Vu. Fuente: los autores

En la cuarta interfaz lo primero que se debe hacer es ingresar el valor de la carga axial en la columna, para realizar el chequeo de "Columna fuerte – Viga débil". Se ingresa el valor y se ve que la conexión cumple con lo requerido en la norma AISC 341-16. Se puede continuar con el diseño de la conexión entre el alma de la viga y el ala de la columna. Luego se despliega una nueva ventana "Placa de cortante" donde se ingresa la fuerza axial de la viga en la conexión Pu-sp y se pueden visualizar el resto de las solicitaciones en esta parte de la conexión.

Figura 13. Diseño de la placa de cortante para conexión con el alma de la viga. Fuente: los autores

Se selecciona el mismo tipo de acero ASTM A572 Grado 50, el grado de pernos y su diámetro. Aquí también el programa muestra el mínimo diámetro requerido para soportar la fuerza de diseño, en este caso la fuerza cortante Vu-bolt. Se ingresa el valor de svert y el programa calcula el tamaño de la ranura horizontal para los pernos superior e inferior de la placa. Se finaliza el diseño de esta parte de la conexión especificando el espesor de la placa y las distancias al borde vertical y horizontal (ver Figura 13). Con todos los datos anteriores suministrados, se habilitan los botones "Chequeos Placa de cortante" y "Chequeos alma de la viga". Se hace clic en cada uno de ellos para visualizar las resistencias de la conexión para cada uno de los estados límite que se deben estudiar para cumplir con lo requerido en el procedimiento de diseño de la norma AISC 358-16.

Figura 14. Diseño de soldadura para unión de la placa con el ala de la columna y diseño del recorte en el alma de la viga. Fuente: los autores

Como la conexión tiene la resistencia necesaria, se continúa con el diseño de la soldadura entre la placa y el ala de la columna. Se selecciona soldadura de filete doble con un electrodo E70XX y un tamaño de la soldadura de 10mm. Finalmente se ingresa en la parte inferior del panel el valor "c" que corresponde al diseño del recorte del alma de la viga (ver Figura 14).

Luego se despliega una nueva ventana en la que se tiene en el panel de la derecha "Chequeos en la columna", se puede visualizar la resistencia de la columna ante cada uno de los casos de falla. El menú "pop-up" en el panel "Fluencia por cortante en la zona panel" se encuentra por defecto en la opción "No", no se modifica la elección. Se ve que en todos los estados límite la resistencia es mayor a la fuerza Pr-link y que el espesor del ala de la columna es mayor al mínimo requerido. No es necesario diseñar un refuerzo. Con todos los valores ingresados se hace clic en el botón "Resultados" para avanzar a la siguiente interfaz y ver la configuración final de la conexión diseñada. Se observa en esta interfaz cada una de las dimensiones de la pieza *Yield-Link* que fueron ingresadas en las interfaces anteriores, así como los datos de cada una de las partes de la conexión (ver Figura 15).

Jesús María, Saldivia Manfredil; Gino, Pannillo

Figura 15. Resultados finales del diseño. Fuente: los autores

4.3. Cálculo para la Validación Manual

Con la finalidad de verificar la información suministrada por el programa se procedió a realizar el diseño de una conexión tipo *Simpson Strong-Tie Strong frame* de manera manual, para luego comparar los resultados con del diseño realizado con el software. Se proyectó una conexión con las siguientes características:

- Tipo de nodo: nodo de borde
- *Mu*=10.000 *kgf***m* (98,07 kN**m*)
- *CP*=2.700 *kgf*/*m* (26,48 kN/*m*)
- *CV*=1.000 *kgf/m* (9,80 kN/*m*)
- Carga axial en columna inferior: 150.000 kgf (1471 kN)
- Carga axial en columna superior: 135.000 kgf (1324 kN)
- Distancia entre centros de las columnas: 6 m
- 1. Geometría y materiales de miembros

Tipo de nodo	nodo de borde	
Perfil viga	IPE-360	Acero: ASTM A572 Grado 50
Perfil columna	HEB-400	Acero: ASTM A572 Grado 50
Propiedades del perfil de la viga (mm)		
d	360mm	
bf	170mm	
tf	12,7mm	
tw	8,0mm	
Propiedades del perfil de la columna (mm)		
d	400mm	
bf	300mm	
tf	24mm	
tw	13,5mm	

2. Estimación de la resistencia a la cedencia requerida

Propiedades de la pieza Acero

ASTM A572 Grado 50

Fy_{-link}	$3.515 \ kgf/cm^2$	(344,70 MPa)
Fu_{-link}	$4.570 \ kgf/cm^2$	(448,16 MPa)
Ry	1,1	
Rt	1,2	
tstem	13 mm	Espesor del alma
R	13 mm	Radio de corte en la sección reducida
Cálculo de la resistencia y área requerida		
Ми	10.000 kgf*m	(98,07 kN*m) Dato de entrada
$\phi b=Mu/(\phi b*d)$	0,90	AISC 360 H1.1
P'y-link	30.864 kgf*m	(302,7 kN*m) AISC 358 Ec. 12.9-1
A'y _{-link} =P'y-link / Fy-link	$878 \ mm^2$	AISC 358 Ec. 12.9-2

3. Selección del ancho y largo de la sección no reducida de la pieza del lado de la columna

Selección de los anchos no reducidos del alma de la pieza Yield-	Link (mm)	
min(bbf,bcf)	170mm	
bcol-side=	165mm	
Selección de largo no reducido del alma de la pieza Yield-Link de	el lado de la columna (mm)
a	70mm	
tflange	25mm	
Lcol-sidemin = a-tflange+25	70mm	AISC 358 12.9 Paso 4.2
Lcol-sidemax	127mm	AISC 358 12.9 Paso 4.2
Lcol-side	90mm ok	

4. Determinación del ancho del área de cedencia del alma de la pieza (mm)

byield,req'd byieldmax = mín(0,5*bcol-side,0,5*bbm-side,,88)	68mm 83mm	AISC 358 Ec. 12.9-3 AISC 358 12.9 Paso 5
byield	70mm ok	

5. Determinación de la longitud mínima del área de cedencia del alma de la pieza

Ly-linkmin =(0,05/0,085)*[(d+ tstem)/2] +2R Ly-link 6. Cálculo de la tensión cedente esperada y la tensión m	136mm 160mm ok áxima probable de la pieza	AISC 358 Ec. 12.9-4
Ay- _{link} =byield*tstem Pye-link=Ay-link*Ry*Fy-link	910mm ² 35.185 kgf	(345,05 kN) AISC 358 Ec. 12.9-5

Pr-link = Ay-link * Rt * Fu-link 49.904 kgf (489,39 kN) AISC 358 Ec. 12.9-6

7. Selección del ancho y largo de la sección no reducida de la pieza del lado de la viga

Diseño pernos para conexión entre el alma de la pieza y el ala de la viga para transferencia de cortante Grado de pernos ASTM A325

Grado de perilos	1011011025
db-stem	7/8"
Cond.rosca	" <i>N</i> "
Fnv	3.793 kgf/cm ² (371,97 MPa) AISC 360 Tabla J3.2
$Ab = \pi * (db - stem/2)^2$	$388 mm^2$
$\phi Rn = \phi * Fnv * Ab$	11.037 <i>kgf</i> (108,24 kN) AISC 360 J3-1
nbreq=Pr-link/\$\phiRn\$	5
N° pernos	6 ok
Selección del ancho no reducido del alma de la pieza del lado de	e la viga (mm)
$\min(bbf, bcf)$	170mm
bbm-side	165mm
Determinación del largo no reducido del alma de la pieza del lado	lo de la viga
Sc min = $1,5*$ <i>db</i> - <i>stem</i>	34mm AISC 358 12.9 Paso 8.3
Sc	40mm ok
Sstem min = $2,67 * db$ -stem	60mm AISC 360-16 J3.3
Sstem	70mm ok
Sb min = le min	29mm AISC 360 Tabla J3.4
Sb	40mm ok
Lbm-side=Sc+[(nfilas-1) * Sstem]+ Sb	220mm AISC 358 12.9-7

<u>Revista Gaceta Técnica</u>. Artículo de Investigación. 25(1), 51-77, enero-junio, 2024 ISSN: 2477-9539 Chequeo de la conexión entre el alma de la pieza Yield-Link y el ala de la viga

Ag = bbm - side * tstem	$2.145 \ mm^2$	Estado límite: fluencia del área
$\phi Rn = 0.90 * F_{\rm V} * A_{\rm q}$	67.857 kaf	gruesa (665.45 kN) AISC 360 J4-1
Chequeo $P_{r-link} \leq \phi R_n$	ok	
dagujeros (Agujero estándar)	24mm	AISC 360 Tabla J3.3
$Ae = (bbm - side - 2 * (dagujeros + 2)) * t_{stem}$	$1.469 \ mm^2$	Estado límite: fractura del área
$\phi Rn = 0.75 * F_u * A_e$	50.350 kgf	(493,76 kN) AISC 360 J4-2
Chequeo $P_{r-link} \leq \phi R_n$	ok	
h =	40mm	Estado límite: bloque de cortante (caso 1).
$g_{stem} = b_{bm} - side - 2 * h$	85mm	
$A_{nt1} = (g_{stem} - (d_{agujeros} + 2)) * t_{stem}$	$767 \ mm^2$	
$A_{gv1} = 2 * (s_b + 2 * s_{stem}) * t_{stem}$	$4.680 \ mm^2$	
$A_{nv1} = 2 * [(s_b + 2 * s_{stem}) - 2, 5 * (d_{agujeros} + 2)]^* t_{stem}$	$2.990 \ mm^2$	
$ \phi R_n = 0.75 * (0.60 * F_{u*} A_{nv1} + F_{u*} A_{nt1}) \leq 0.60 * F_y * A_{gv1} + F_u * A_{nt1}) $	87.778 kgf	(860,81 kN) AISC 360 J4-5
Chequeo $P_{r-link} \leq \phi R_n$	ok	
$A_{nt2} = (b_{bm-side} - h - 1, 5 * (d_{agujeros} + 2)) * t_{stem}$	$1.118 \ mm^2$	Estado límite: bloque de cortante
$A_{au2} = (s_b + 2 * s_{stem}) * t_{stem}$	$2.340 \ mm^2$	(6030 2).
$A_{n\nu2} = [(s_b + 2 * s_{stem}) - 2.5 * (d_{aquieros} + 2)]^* t_{stem}$	$1.495 \ mm^2$	
$ \frac{1}{4} 1$	69.064 kgf	(677,29 kN) AISC 360 J4-5
Chequeo $P_{r-link} \leq \phi R_n$	ok	
$A_{nt3}=2*h-0.5*(d_{agujeros}+2)*tstem$	$702 \ mm^2$	Estado límite: bloque de cortante
$A_{a123} = 2 * (S_{b} + 2 * S_{stam}) * t_{stam}$	$4.680 \ mm^2$	(caso 5).
$A_{n123} = 2 * [(s_b + 2 * s_{stem}) - 2.5 * (d_{aquieros} + 2)] *$		
t _{stem}	$2.990 \ mm^2$	
$\phi R_n = 0.75 * (0.60 * F_u * A_{nv3} + F_u * A_{nt3} \le 0.60 * F_y * A_{gv3}$	85.550 kgf	(838,96 kN) AISC 360 J4-5
Chequeo $P_{r-link} \le \phi R_n$	ok	
$l_c(borde) = s_b - 0.5 * d_aquieros$	28mm	Estado límite: aplastamiento
$l(interms)$ Set on $= d_{2}$ subject of	16mm	ejercido por los pernos.
$R_c(lnterno) = 0$ stem "agujeros $R_n(borde) = 1.2 * lc * tstem * Fu$	19.961 kaf	(195.75 kN) AISC 360 J3-6c
$R_n(interno) = 1.2 * l_c * t_{stem} * F_u$	32.794 kgf	(321,60 kN) AISC 360 J3-6c
$Lim R_n = 2.4 * d_b - stem * t_{stem} * F_u$	31.368 kgf	(307,61 kN)
$\phi R_n = 0.75 * (2 * R_n(borde) + 4 * R_n(interno))$	124.045 kgf	(1.216 kN)
Chequeo $P_{r-link} \leq \phi R_n$	ok	
^F y-viga	$3515 kgf/cm^2$	(344,70 MPa)
^F u-viga	$4570 kgf/cm^2$	(448,16 MPa)
$l_c(borde) = (s_c - 0.5 * d_{agujeros}) + L_y - link$	233mm	Estado límite: aplastamiento
$+ (0.5 * L_{col-side})$		ejercido por los pernos
$l_c(interno) = {}^{s}stem {}^{-d}agujeros$	46mm	
$R_n(borae) = 1, 2 * l_c * t_{bf} * F_u$ $R_n(interno) = 1, 2 * l_c * t_{bf} * F_u$	1622// Kgf 32037 kgf	(1.591 kN) AISC 360 J3-6c (314 18 kN) AISC 360 J3-6c
$Lim R_n = 2,4 * d_{b-stem} * t_{bf} * F_u$	30.644 kgf	(300,51 kN) AISC 360 J3-6a
$\phi R_n = 0.75 * (2 * R_n(borde) + 4 * R_n(interno))$	137.898 kgf	(1.352 kN)
Chequeo $P_{r-link} \leq \phi R_n$	ok	
$A_{nt}=2 * [(b_{bf}-g_{stem})/2 - 0.5 * d_{agujeros}] * t_{bf}$	$774 \ mm^2$	Estado límite: bloque de cortante.
$A_{gv} = 2 * (2 * 5 Ly - link + (0.5 * L_{col-side})) * t_{bf}$	$9.779 \ mm^2$	
$A_{nv} = A_{gv} - 2 * [2,5 * (d_{agujeros} + 2) * t_{bf}]$	$8.255 \ mm^2$	
$\phi R_n = 0.75 * (0.60 * F_u * A_{nv} + F_u * A_{nt} \le 0.60 * F_y * A_{gv} + F_u * A_{nt})$	181.208 kgf	(1.777 kN) AISC 360 J4-5
Chequeo $P_{r-link} \leq \phi R_n$	ok	

8. Diseño de la conexión entre el ala de la pieza Yield-Link y el ala de la columna

Grado de pernos:	ASTM A325	Diseño de los pernos.
$r_t = P_{r-link}/4$	12.476 kgf	(122,35 kN) AISC 358 12.9 Paso 9.1
N° pernos	4	
$d_{b-flange}$	3/4"	
F_{nt}	$6.322 \ kgf/cm^2$	(619,98 MPa) AISC 360 Tabla J3.2
$A_b = \pi * (d_b - f lange/2)^2$	$285 \ mm^2$	
$\phi R_n = \phi * F_{nt} * A_b$ Chequeo $r_t \leq \phi R_n$	13513 kgf ok	(132,52 kN) AISC 360 J3-1
Cálculo del espesor mínimo del ala de la pieza Yield-Link.	26	AISC 260 T-11- 12 4
$l_{emin} = 2.67 * d_{h}$ flow as	20 mm	AISC 300 1 abia 33.4
h = 2, 0, 0, 0, 0, 0, 0	165mm	AISC 500-10 55.5
helen zo	170mm	
L _k	30mm	ok
$S_{flange} = b_{flange} - 2 * L_{h}$	105mm	ok
L_v	30mm	ok
$g_{flange} = h_{flange} - 2 * L_{v}$	110mm	ok
$b = (g_{flange} - t_{stem})/2$	48,5 mm	
$p = m(n(b_{flam_{ae}}/2.^{s}flam_{ae}))$	85,5mm	
$b' = b - d_{b-flange/2}$	39mm	
ϕ_d	1,00	AISC 358 2.4.1
$t_{flange}min_{=}\sqrt{4r_{t}b''(p\phi_{d}F_{u})}$	23mm	
t _{flange}	25mm	
Chequeo $t_{flange} \ge t_{flange} min$ Chequeo de la conexión.	ok	
$A_{av} = 2 * b f lange * t f lange$	$8250 \ mm^2$	Estado límite: fluencia por
$\phi R_n = 1.00 * 0.60 * F_v * A_{av}$	173 992 kof	(1 706 kN) AISC 360 I4-3
Chequeo $P_{r-link} \le \phi R_n$ Estado límite: fractura por cortante.	ok	(1.700 kt)/1650 500 54 5
$d_{aquieros=dh=stom+2} mm$	22mm	AISC 360 Tabla J3.3
$-2 * [b_{flam} a_{2} - 2 * (d_{a} a_{liam} a_{2} + 2)] * t_{flam} a_{2}$	$5650mm^2$	
$A_{nv} = 0.75 * 0.60 * F_u * A_{nv}$	116.192 kgf	(1.139 kN) AISC 360 J4-4
Chequeo $P_{r-link} \leq \phi R_n$	ok	
Tipo de soldadura	soldadura de filete doble	Diseño de la soldadura para unión entre alma y ala de la pieza Yield- Link.
Tipo de electrodo	E70XX	
$P_{r-weld} = b_{col-side} * t_{stem} * R_t * F_{u-link}$	117.632 kgf	(1.154 kN) AISC 358 Ec. 12.9-10
F _{EXX}	$4.921 \ kgf/cm^2$	(482,59 MPa)
W	20mm	
$L = b_{flange}$	165mm	
$F_{nw} = 0.60 * F_{EXX} * (1.0 + 0.50 * sen^{1.590})$	$4.429 \ kgf/cm^2$	(434,34 MPa) AISC 360 J2-5
$\phi R_n = 0.75 * 2 * 0.707 * W * L * F_{nW}$	154.999 kgf	(1.520 kN) AISC 360 J2-4
Chequeo $r r - weld \ge \varphi \kappa n$	ok	
9. Diseño del sistema para restricción de pandeo		(Samin AISC 259 16 12 9 6)
Grado de pernos	ASTM A325	(Seguil AISC 330-10 12.0.0).
Diámetro de pernos: d_{b-brp}	5/8"	
Geometría y material de la placa para restricción de pandeo.		
Acero: ASTM A572 Grado 50	22	
espesor	∠∠mm	
Ancho $min = L_{i-link} + 25 \text{ mm}$	185mm	
Largo máx	250mm	

<u>Revista Gaceta Técnica</u>. Artículo de Investigación. 25(1), 51-77, enero-junio, 2024 ISSN: 2477-9539

Largo	200mm	ok	
Geometría y material de los espaciadores.			
Acero: ASTM A572 Grado 50			
$Espesor = t_{stem}$	13mm		
Ancho mín ^{= 2} * d_{b-brp}	32mm		
Ancho máx = $(b_{bf} - b_{yield})/2 - 3$	47mm		
Ancho	40mm	ok	
$Largo = 0.5 * L_{y} - link$	80mm		

10. Cálculo de los parámetros de rigidez de la conexión

Contribución de la rigidez axial elástica debida a la rigidez a flexión en el ala de la pieza Yield-Link.

$$K_{1} = \frac{(0.75)(192)E\left(\frac{b_{col-side}t_{flange}^{3}}{12}\right)}{g_{flange}^{3}}$$
 488.120 kgf/mm (4.786 kN/mm) AISC 358 Ec. 12.9-11

Contribución de la rigidez axial elástica debida a la sección no cedente de la pieza Yield-Link. $l_v = s_{stem}/2$ AISC 358 12.9 Paso 11.1 35mm

$$K_{2} = \frac{t_{stem} b_{col-side} E}{L_{col-side} + s_{c} + l_{v}}:$$
 273.000 kgf/mm (2.677 kN/mm) AISC 358 Ec. 12.9-12

Contribución de la rigidez axial elástica debida a la sección cedente de la pieza Yield-Link.

$$K_{3} = \frac{t_{stem} b_{yield} E}{L_{y-link}}$$
119.438 kgf/mm
(1.171 kN/mm) AISC 358 Ec.
12.9-13
Rigidez axial elástica efectiva de la pieza Yield-Link.
$$K_{eff} = \frac{K_{1}K_{2}K_{3}}{(K_{1}K_{2} + K_{2}K_{3} + K_{1}K_{3})}$$
71.001 kgf/mm
(696 kN/mm) AISC 358 Ec. 12.9-
14
Máxima capacidad de momento probable del par de piezas Yield-Link.
$$M_{m} = P_{0} wid(d + t_{mm})$$
18 614 k af * m
(182,54 kN*m) AISC 358 Ec. 12.9-

 $M_{pr} = P_{r-link}(d + t_{stem})$ 18.614 *kgf* * *m* 16

Momento esperado de fluencia del par de piezas Yield-Link.

$$M_{ye-link} = P_{ye-link}(d + t_{stem})$$
 13.124 kgf * m (128,70 kN*m) AISC 358 Ec. 12.9-
15

Deformación axial de la pieza Yield-Link para una rotación de la conexión de 0.04 rad.

$$\Delta_{0.04} = \frac{0.04(d + t_{stem})}{2}$$
7,46mm AISC 358 Ec. 12.9-17

Deformación axial de la pieza Yield-Link para una rotación de la conexión de 0.07 rad.

$$\Delta_{0.07} = \frac{0.07(d + t_{stem})}{2}$$
 13,06mm AISC 358 Ec. 12.9-18

Deformación axial de la pieza Yield-Link para el esfuerzo de cedencia esperado.

$$\Delta_{y} = \frac{P_{ye-link}}{K_{eff}}$$
 0,50mm AISC 358 Ec. 12.9-19

Rotación de la conexión para el esfuerzo de cedencia esperado en la pieza Yield-Link.

$$\theta_y = \frac{\Delta_y}{0.5(d + t_{stem})}$$
 0,003 rad AISC 358 Ec. 12.9-20

Momento resistente de la conexión.

$$\phi M_n = 0.90 * \frac{M_{ye-link}}{R_y}$$
 10.738 kgf * m (105,30 kN*m) AISC 358 12.9 Paso 11.2

11. Cálculo de la fuerza cortante en la viga y en la conexión alma de la viga – ala de la columna

СР	2.700 kgf/m	(26,48 kN/ <i>m</i>) Carga permanente en viga
CV	1.000 <i>kgf/m</i>	(9,80 kN/m) Carga variable en viga
L_h	5,46 m	Distancia entre línea central de los pernos de la placa de cortante a ambos extremos de la viga
f_1	1,6	C
$Q = 1,2 * CP + f_1 * CV$	4.840 kgf/m	(47,46 kN/m)
$V_{gravity} = Q * L_{h}/2$	13.213 kgf	(129,58 kN)
$V_u = 2M_{pr}/L_h + V_{gravity}$	20.031 kgf	(196,44 kN) AISC 358 Ec. 12.9- 21
12. Chequeo de la relación de momentos de los miembros de	le la conexión	21
Propiedades de la columna (HEB-400 ASTM A572 Grado 50).		
Fyc	$3.515 \ kgf/cm^2$	(344,70 MPa)
d_c	400 mm	
A_g	$198 \ cm^2$	
Z_c	$3.230 \ cm^3$	
Momento resistente de las columnas.		
P_{r1}	150.000 kgf	(1.4/1 kN) Columna interior
P_{r2}	135.000	(1.324 kN) Columna superior
α_s	1,0	AISC 341 D1.2a
$\Sigma M^* {}_{pc} = \Sigma Z_c (F_{yc} - \alpha_s P_r / A_g)$ Momento resistente de la viga.	180.577 kgf * m	(1771 kN*m) AISC 341 E3-2
$M_{uv} = V_u(a + d_c/2)$	$5.408 \ kgf * m$	(53,03 kN* <i>m</i>)
$\Sigma M^*_{mh} = \Sigma (M_{mr} + M_{uv})$	$24.022 \ kgf * m$	(235,58 kN*m) AISC 358 12.4
Relación de momentos.	07	
ΣM^* / ΣM^* , 1.0		
$\sum M pc^{2M} pb > 1,0$	7,5 ok	AISC 341 E3-1
13. Diseño de la conexión alma de la viga – ala de la column	na	
13. Diseño de la conexión alma de la viga – ala de la columnSolicitaciones en la conexión:	na	
13. Diseño de la conexión alma de la viga – ala de la column Solicitaciones en la conexión: $M_{u-sp} = V_u * a$	na 1402 kgf * m	(13,75 kN*m) AISC 358 12.9 Paso 15
13. Diseño de la conexión alma de la viga – ala de la column Solicitaciones en la conexión: $M_{u-sp} = V_u * a$ P_{u-sp}	na 1402 kgf * m 0 kgf	(13,75 kN*m) AISC 358 12.9 Paso 15
13. Diseño de la conexión alma de la viga – ala de la column Solicitaciones en la conexión: $M_{u-sp} = V_u * a$ P_{u-sp} V_u	na 1402 kgf * m 0 kgf 20.031 kgf	(13,75 kN*m) AISC 358 12.9 Paso 15 (196,34 kN)
13. Diseño de la conexión alma de la viga – ala de la column Solicitaciones en la conexión: $M_{u-sp} = V_u * a$ P_{u-sp} V_u Diseño de pernos.	na 1402 kgf * m 0 kgf 20.031 kgf	(13,75 kN*m) AISC 358 12.9 Paso 15 (196,34 kN)
13. Diseño de la conexión alma de la viga – ala de la column Solicitaciones en la conexión: $M_{u}-sp = V_{u} * a$ $P_{u}-sp$ V_{u} Diseño de pernos. $V_{u}-bolt = \sqrt{P_{u}-sp^{2}} + (V_{u}/3)^{2}$	na 1402 kgf * m 0 kgf 20.031 kgf 6.677 kgf	(13,75 kN*m) AISC 358 12.9 Paso 15 (196,34 kN) (65,48 kN) AISC 358 Ec. 12.9-22
13. Diseño de la conexión alma de la viga – ala de la column Solicitaciones en la conexión: $M_{u}-sp = V_{u} * a$ $P_{u}-sp$ V_{u} Diseño de pernos. $V_{u}-bolt = \sqrt{P_{u-sp}^{2}} + (V_{u}/3)^{2}$ $N^{\circ} pernos$	na 1402 kgf * m 0 kgf 20.031 kgf 6.677 kgf 3	(13,75 kN*m) AISC 358 12.9 Paso 15 (196,34 kN) (65,48 kN) AISC 358 Ec. 12.9-22
13. Diseño de la conexión alma de la viga – ala de la column Solicitaciones en la conexión: $M_{u}-sp = V_{u} * a$ $P_{u}-sp$ V_{u} Diseño de pernos. $V_{u}-bolt = \sqrt{P_{u}-sp^{2}} + (V_{u}/3)^{2}$ N° pernos Grado pernos:	na 1402 kgf * m 0 kgf 20.031 kgf 6.677 kgf 3 ASTM A325	(13,75 kN*m) AISC 358 12.9 Paso 15 (196,34 kN) (65,48 kN) AISC 358 Ec. 12.9-22
13. Diseño de la conexión alma de la viga – ala de la column Solicitaciones en la conexión: $M_{u}-sp = V_{u} * a$ $P_{u}-sp$ V_{u} Diseño de pernos. $V_{u}-bolt = \sqrt{P_{u}-sp^{2}} + (V_{u'}3)^{2}$ $N^{\circ} pernos$ <i>Grado pernos</i> : $d_{b}-sp$	1402 kgf * m 0 kgf 20.031 kgf 6.677 kgf 3 ASTM A325 3/4"	(13,75 kN*m) AISC 358 12.9 Paso 15 (196,34 kN) (65,48 kN) AISC 358 Ec. 12.9-22
13. Diseño de la conexión alma de la viga – ala de la column Solicitaciones en la conexión: $M_{u}-sp = V_{u} * a$ $P_{u}-sp$ V_{u} Diseño de pernos. $V_{u}-bolt = \sqrt{P_{u-sp}^{2} + (V_{u}/3)^{2}}$ $N^{\circ} pernos$ Grado pernos: $d_{b}-sp$ F_{nv}	na 1402 kgf * m 0 kgf 20.031 kgf 6.677 kgf 3 ASTM A325 3/4" 3.793 kgf/cm ²	(13,75 kN*m) AISC 358 12.9 Paso 15 (196,34 kN) (65,48 kN) AISC 358 Ec. 12.9-22 (371,97 MPa) AISC 360 Tabla
13. Diseño de la conexión alma de la viga – ala de la column Solicitaciones en la conexión: $M_{u}-sp = V_{u} * a$ $P_{u}-sp$ V_{u} Diseño de pernos. $V_{u}-bolt = \sqrt{P_{u}-sp^{2}} + (V_{u}/3)^{2}$ $N^{\circ} pernos$ Grado pernos: $d_{b}-sp$ F_{nv} $A_{i} = \pi * (d_{i} - (2)^{2}$	1402 kgf * m 0 kgf 20.031 kgf 6.677 kgf 3 ASTM A325 3/4" 3.793 kgf/cm ² 285 mm ²	(13,75 kN*m) AISC 358 12.9 Paso 15 (196,34 kN) (65,48 kN) AISC 358 Ec. 12.9-22 (371,97 MPa) AISC 360 Tabla J3.2
13. Diseño de la conexión alma de la viga – ala de la column Solicitaciones en la conexión: $M_{u}-sp = V_{u} * a$ $P_{u}-sp$ V_{u} Diseño de pernos. $V_{u}-bolt = \sqrt{P_{u-sp}^{2} + (V_{u}/3)^{2}}$ $N^{\circ} pernos$ Grado pernos: $d_{b}-sp$ F_{nv} $A_{b} = \pi * (d_{b}-sp/2)^{2}$ $\phi B_{v} = 0.75 * F_{vv} * A_{b}$	1402 kgf * m 0 kgf 20.031 kgf 6.677 kgf 3 ASTM A325 3/4" 3.793 kgf/cm ² 285 mm ² 8.107 kgf	(13,75 kN*m) AISC 358 12.9 Paso 15 (196,34 kN) (65,48 kN) AISC 358 Ec. 12.9-22 (371,97 MPa) AISC 360 Tabla J3.2 (79 50 kN) AISC 360 13-1
13. Diseño de la conexión alma de la viga – ala de la column Solicitaciones en la conexión: $M_{u}-sp = V_{u} * a$ $P_{u}-sp$ V_{u} Diseño de pernos. $V_{u}-bolt = \sqrt{P_{u}-sp^{2}} + (V_{u}/3)^{2}$ $N^{\circ} pernos$ Grado pernos: $d_{b}-sp$ F_{nv} $A_{b} = \pi * (d_{b}-sp/2)^{2}$ $\phi R_{n} = 0.75 * F_{nv} * A_{b}$ Chaganga Var. halt $\leq \phi R_{v}$	1402 kgf * m 0 kgf 20.031 kgf 6.677 kgf 3 ASTM A325 3/4" 3.793 kgf/cm ² 285 mm ² 8.107 kgf	(13,75 kN*m) AISC 358 12.9 Paso 15 (196,34 kN) (65,48 kN) AISC 358 Ec. 12.9-22 (371,97 MPa) AISC 360 Tabla J3.2 (79,50 kN) AISC 360 J3-1
13. Diseño de la conexión alma de la viga – ala de la column Solicitaciones en la conexión: $M_{u}-sp = V_{u} * a$ $P_{u}-sp$ V_{u} Diseño de pernos. $V_{u}-bolt = \sqrt{P_{u}-sp^{2}} + (V_{u'}3)^{2}$ $N^{\circ} pernos$ Grado pernos: $d_{b}-sp$ F_{nv} $A_{b} = \pi * (d_{b}-sp/2)^{2}$ $\phi R_{n} = 0.75 * F_{nv} * A_{b}$ $Chequeo V_{u}-bolt \leq \phi R_{n}$ Gracometría de la placa de cortante	1402 kgf * m 0 kgf 20.031 kgf 6.677 kgf 3 ASTM A325 3/4" 3.793 kgf/cm ² 285 mm ² 8.107 kgf ok	(13,75 kN*m) AISC 358 12.9 Paso 15 (196,34 kN) (65,48 kN) AISC 358 Ec. 12.9-22 (371,97 MPa) AISC 360 Tabla J3.2 (79,50 kN) AISC 360 J3-1
13. Diseño de la conexión alma de la viga – ala de la column Solicitaciones en la conexión: $M_{u}-sp = V_{u} * a$ $P_{u}-sp$ V_{u} Diseño de pernos. $V_{u}-bolt = \sqrt{P_{u}-sp^{2}} + (V_{u}/3)^{2}$ $N^{\circ} pernos$ Grado pernos: $d_{b}-sp$ F_{nv} $A_{b} = \pi * (d_{b}-sp/2)^{2}$ $\phi R_{n} = 0.75 * F_{nv} * A_{b}$ $Chequeo V_{u}-bolt \leq \phi R_{n}$ Geometría de la placa de cortante. L_{min} agui std	1402 kgf * m 0 kgf 20.031 kgf 6.677 kgf 3 ASTM A325 3/4" 3.793 kgf/cm ² 285 mm ² 8.107 kgf ok	(13,75 kN*m) AISC 358 12.9 Paso 15 (196,34 kN) (65,48 kN) AISC 358 Ec. 12.9-22 (371,97 MPa) AISC 360 Tabla J3.2 (79,50 kN) AISC 360 J3-1 AISC 360 Tabla J3.4
13. Diseño de la conexión alma de la viga – ala de la column Solicitaciones en la conexión: $M_{u}-sp = V_{u} * a$ $P_{u}-sp$ V_{u} Diseño de pernos. $V_{u}-bolt = \sqrt{P_{u-sp}^{2} + (V_{u}/3)^{2}}$ $N^{\circ} pernos$ Grado pernos: $d_{b}-sp$ F_{nv} $A_{b} = \pi * (d_{b-sp}/2)^{2}$ $\phi R_{n} = 0.75 * F_{nv} * A_{b}$ $Chequeo V_{u}-bolt \le \phi R_{n}$ Geometría de la placa de cortante. l_{emin} aguj. std l_{emin} ran $h_{z} = l_{e} \min + 3/4 * d_{b-cm}$	1402 kgf * m 0 kgf 20.031 kgf 6.677 kgf 3 ASTM A325 3/4" 3.793 kgf/cm ² 285 mm ² 8.107 kgf ok 26mm 40mm	(13,75 kN*m) AISC 358 12.9 Paso 15 (196,34 kN) (65,48 kN) AISC 358 Ec. 12.9-22 (371,97 MPa) AISC 360 Tabla J3.2 (79,50 kN) AISC 360 J3-1 AISC 360 Tabla J3.4 AISC 360 Tabla J3.4
13. Diseño de la conexión alma de la viga – ala de la column Solicitaciones en la conexión: $M_{u}-sp = V_{u} * a$ $P_{u}-sp$ V_{u} Diseño de pernos. $V_{u}-bolt = \sqrt{P_{u-sp}^{2} + (V_{u}/3)^{2}}$ $N^{\circ} pernos$ Grado pernos: $d_{b}-sp$ F_{nv} $A_{b} = \pi * (d_{b-sp}/2)^{2}$ $\phi R_{n} = 0.75 * F_{nv} * A_{b}$ $Chequeo V_{u}-bolt \leq \phi R_{n}$ Geometría de la placa de cortante. l_{emin} ran. hz. = l_{e} min +3/4 * d_{b-sp} s min = 2 67 * d_{b-cn}	1402 kgf * m 0 kgf 20.031 kgf 6.677 kgf 3 ASTM A325 3/4" 3.793 kgf/cm ² 285 mm ² 8.107 kgf ok 26mm 40mm 51mm	(13,75 kN*m) AISC 358 12.9 Paso 15 (196,34 kN) (65,48 kN) AISC 358 Ec. 12.9-22 (371,97 MPa) AISC 360 Tabla J3.2 (79,50 kN) AISC 360 J3-1 AISC 360 Tabla J3.4 AISC 360 Tabla J3.5 AISC 360-16 J3 3
13. Diseño de la conexión alma de la viga – ala de la columa Solicitaciones en la conexión: $M_{u}-sp = V_{u} * a$ $P_{u}-sp$ V_{u} Diseño de pernos. $V_{u}-bolt = \sqrt{P_{u-sp}^{2} + (V_{u}/3)^{2}}$ $N^{\circ} pernos$ Grado pernos: $d_{b}-sp$ F_{nv} $A_{b} = \pi * (d_{b-sp}/2)^{2}$ $\phi R_{n} = 0.75 * F_{nv} * A_{b}$ $Chequeo Vu-bolt \le \phi Rn$ Geometría de la placa de cortante. l_{emin} aguj. std l_{emin} ran. hz. = l_{e} min +3/4 * d_{b-sp} s min = 2,67 * d_{b-sp}	1402 kgf * m 0 kgf 20.031 kgf 6.677 kgf 3 ASTM A325 3/4" 3.793 kgf/cm ² 285 mm ² 8.107 kgf ok 26mm 40mm 51mm 30mm	(13,75 kN*m) AISC 358 12.9 Paso 15 (196,34 kN) (65,48 kN) AISC 358 Ec. 12.9-22 (371,97 MPa) AISC 360 Tabla J3.2 (79,50 kN) AISC 360 J3-1 AISC 360 Tabla J3.4 AISC 360 Tabla J3.5 AISC 360-16 J3.3
13. Diseño de la conexión alma de la viga – ala de la columa Solicitaciones en la conexión: $M_{u}-sp = V_{u} * a$ $P_{u}-sp$ V_{u} Diseño de pernos. $V_{u}-bolt = \sqrt{P_{u-sp}^{2} + (V_{u}/3)^{2}}$ $N^{\circ} pernos$ Grado pernos: $d_{b}-sp$ F_{nv} $A_{b} = \pi * (d_{b-sp}/2)^{2}$ $\phi R_{n} = 0.75 * F_{nv} * A_{b}$ $Chequeo Vu-bolt \le \phi Rn$ Geometría de la placa de cortante. l_{emin} ran. hz. = l_{e} min +3/4 * d_{b-sp} s min = 2,67 * d_{b-sp}	1402 kgf * m 0 kgf 20.031 kgf 6.677 kgf 3 ASTM A325 3/4" 3.793 kgf/cm ² 285 mm ² 8.107 kgf ok 26mm 40mm 51mm 30mm 45mm	(13,75 kN*m) AISC 358 12.9 Paso 15 (196,34 kN) (65,48 kN) AISC 358 Ec. 12.9-22 (371,97 MPa) AISC 360 Tabla J3.2 (79,50 kN) AISC 360 J3-1 AISC 360 Tabla J3.4 AISC 360 Tabla J3.5 AISC 360-16 J3.3
13. Diseño de la conexión alma de la viga – ala de la columa Solicitaciones en la conexión: $M_{u-sp} = V_{u} * a$ P_{u-sp} V_{u} Diseño de pernos. $V_{u-bolt} = \sqrt{P_{u-sp}^{2} + (V_{u}/3)^{2}}$ $N^{\circ} pernos$ Grado pernos: d_{b-sp} F_{nv} $A_{b} = \pi * (d_{b-sp}/2)^{2}$ $\phi R_{n} = 0.75 * F_{nv} * A_{b}$ $Chequeo Vu-bolt \le \phi R_{n}$ Geometría de la placa de cortante. l_{e} min aguj. std l_{e} min ran. hz. = l_{e} min +3/4 * d_{b-sp} s min = 2,67 * d_{b-sp} s h s_{vert}	1402 kgf * m 0 kgf 20.031 kgf 6.677 kgf 3 ASTM A325 3/4" 3.793 kgf/cm ² 285 mm ² 8.107 kgf ok 26mm 40mm 51mm 30mm 45mm	(13,75 kN*m) AISC 358 12.9 Paso 15 (196,34 kN) (65,48 kN) AISC 358 Ec. 12.9-22 (371,97 MPa) AISC 360 Tabla J3.2 (79,50 kN) AISC 360 J3-1 AISC 360 Tabla J3.4 AISC 360 Tabla J3.5 AISC 360-16 J3.3
13. Diseño de la conexión alma de la viga – ala de la columa Solicitaciones en la conexión: $M_{u}-sp = V_{u} * a$ $P_{u}-sp$ V_{u} Diseño de pernos. $V_{u}-bolt = \sqrt{P_{u-sp}^{2} + (V_{u}/3)^{2}}$ $N^{\circ} pernos$ Grado pernos: $d_{b}-sp$ F_{nv} $A_{b} = \pi * (d_{b-sp}/2)^{2}$ $\phi R_{n} = 0.75 * F_{nv} * A_{b}$ $Chequeo Vu-bolt \leq \phi R_{n}$ Geometría de la placa de cortante. l_{e} min aguj. std l_{e} min ran. hz. = l_{e} min +3/4 * d_{b-sp} s min = 2,67 * d_{b-sp} s h s_{vert} $L_{slot} = d_{b-sp} + 3 + 0.14 * Svert$	1402 kgf * m 0 kgf 20.031 kgf 6.677 kgf 3 ASTM A325 3/4" 3.793 kgf/cm ² 285 mm ² 8.107 kgf ok 26mm 40mm 51mm 30mm 45mm 55mm 30mm	(13,75 kN*m) AISC 358 12.9 Paso 15 (196,34 kN) (65,48 kN) AISC 358 Ec. 12.9-22 (371,97 MPa) AISC 360 Tabla J3.2 (79,50 kN) AISC 360 J3-1 AISC 360 Tabla J3.4 AISC 360 Tabla J3.5 AISC 360-16 J3.3
13. Diseño de la conexión alma de la viga – ala de la columa Solicitaciones en la conexión: $M_{u}-sp = V_{u} * a$ $P_{u}-sp$ V_{u} Diseño de pernos. $V_{u}-bolt = \sqrt{P_{u}-sp^{2}} + (V_{u}/3)^{2}$ $N^{\circ} pernos$ Grado pernos: $d_{b}-sp$ F_{nv} $A_{b} = \pi * (d_{b}-sp/2)^{2}$ $\phi R_{n} = 0.75 * F_{nv} * A_{b}$ $Chequeo Vu-bolt \leq \phi R_{n}$ Geometría de la placa de cortante. l_{emin} aguj. std l_{emin} ran. hz. = l_{e} min +3/4 * $d_{b}-sp$ s min = 2,67 * $d_{b}-sp$ s h svert $L_{slot} = d_{b}-sp + 3 + 0.14 * svertL_{sn}$	1402 kgf * m 0 kgf 20.031 kgf 6.677 kgf 3 ASTM A325 3/4" 3.793 kgf/cm ² 285 mm ² 8.107 kgf ok 26mm 40mm 51mm 30mm 45mm 55mm 30mm 170mm	(13,75 kN*m) AISC 358 12.9 Paso 15 (196,34 kN) (65,48 kN) AISC 358 Ec. 12.9-22 (371,97 MPa) AISC 360 Tabla J3.2 (79,50 kN) AISC 360 J3-1 AISC 360 Tabla J3.4 AISC 360 Tabla J3.5 AISC 360-16 J3.3 AISC 358 Ec. 12.9-23M Largo de la placa
13. Diseño de la conexión alma de la viga – ala de la columa Solicitaciones en la conexión: $M_{u}-sp = V_{u} * a$ $P_{u}-sp$ V_{u} Diseño de pernos. $V_{u}-bolt = \sqrt{P_{u}-sp^{2}} + (V_{u}/3)^{2}$ $N^{\circ} pernos$ Grado pernos: $d_{b}-sp$ F_{nv} $A_{b} = \pi * (d_{b}-sp/2)^{2}$ $\phi R_{n} = 0.75 * F_{nv} * A_{b}$ $Chequeo Vu-bolt \leq \phi R_{n}$ Geometría de la placa de cortante. lemin aguj. std $lemin ran. hz. = l_{e} min + 3/4 * d_{b}-sp$ $s min = 2.67 * d_{b}-sp$ s h svert $L_{slot} = d_{b}-sp + 3 + 0.14 * svert$ L_{sp} b_{sn}	1402 kgf * m 0 kgf 20.031 kgf 6.677 kgf 3 ASTM A325 3/4" 3.793 kgf/cm ² 285 mm ² 8.107 kgf ok 26mm 40mm 51mm 30mm 45mm 55mm 30mm 170mm 115mm	(13,75 kN*m) AISC 358 12.9 Paso 15 (196,34 kN) (65,48 kN) AISC 358 Ec. 12.9-22 (371,97 MPa) AISC 360 Tabla J3.2 (79,50 kN) AISC 360 J3-1 AISC 360 Tabla J3.4 AISC 360 Tabla J3.5 AISC 360-16 J3.3 AISC 358 Ec. 12.9-23M Largo de la placa Ancho de la placa
13. Diseño de la conexión alma de la viga – ala de la columa Solicitaciones en la conexión: $M_{u}-sp = V_{u} * a$ $P_{u}-sp$ V_{u} Diseño de pernos. $V_{u}-bolt = \sqrt{P_{u}-sp^{2}} + (V_{u}/3)^{2}$ $N^{\circ} pernos$ Grado pernos: $d_{b}-sp$ F_{nv} $A_{b} = \pi * (d_{b}-sp/2)^{2}$ $\phi R_{n} = 0.75 * F_{nv} * A_{b}$ $Chequeo Vu-bolt \leq \phi Rn$ Geometría de la placa de cortante. lemin aguj. std $lemin ran. hz. = l_{e} min + 3/4 * d_{b}-sp$ $s min = 2.67 * d_{b}-sp$ s h svert $L_{slot} = d_{b}-sp + 3 + 0.14 * svert$ L_{sp} b_{sp} t_{n}	1402 kgf * m 0 kgf 20.031 kgf 6.677 kgf 3 ASTM A325 3/4" 3.793 kgf/cm ² 285 mm ² 8.107 kgf ok 26mm 40mm 51mm 30mm 45mm 55mm 30mm 170mm 115mm 10mm	 (13,75 kN*m) AISC 358 12.9 Paso 15 (196,34 kN) (65,48 kN) AISC 358 Ec. 12.9-22 (371,97 MPa) AISC 360 Tabla J3.2 (79,50 kN) AISC 360 J3-1 AISC 360 Tabla J3.4 AISC 360 Tabla J3.5 AISC 360-16 J3.3 AISC 358 Ec. 12.9-23M Largo de la placa Ancho de la placa Espesor de la placa
13. Diseño de la conexión alma de la viga – ala de la column Solicitaciones en la conexión: $M_{u}-sp = V_{u} * a$ $P_{u}-sp$ V_{u} Diseño de pernos. $V_{u}-bolt = \sqrt{P_{u}-sp^{2}} + (V_{u}'3)^{2}$ $N^{\circ} pernos$ Grado pernos: $d_{b}-sp$ F_{nv} $A_{b} = \pi * (d_{b}-sp/2)^{2}$ $\phi R_{n} = 0.75 * F_{nv} * A_{b}$ $Chequeo Vu-bolt \leq \phi R_{n}$ Geometría de la placa de cortante. l_{e} min aguj. std l_{e} min ran. hz. = l_{e} min +3/4 * $d_{b}-sp$ s min = 2.67 * $d_{b}-sp$ s h s_{vert} $L_{slot} = d_{b}-sp + 3 + 0.14 * svert$ L_{sp} b_{sp} t_{p} Chequeos en la placa de cortante.	1402 kgf * m 0 kgf 20.031 kgf 6.677 kgf 3 ASTM A325 3/4" 3.793 kgf/cm² 285 mm² 8.107 kgf ok 26mm 40mm 51mm 30mm 45mm 55mm 30mm 170mm 115mm 10mm	(13,75 kN*m) AISC 358 12.9 Paso 15 (196,34 kN) (65,48 kN) AISC 358 Ec. 12.9-22 (371,97 MPa) AISC 360 Tabla J3.2 (79,50 kN) AISC 360 J3-1 AISC 360 Tabla J3.4 AISC 360 Tabla J3.5 AISC 360-16 J3.3 AISC 358 Ec. 12.9-23M Largo de la placa Ancho de la placa Espesor de la placa
13. Diseño de la conexión alma de la viga – ala de la columa Solicitaciones en la conexión: $M_{u}-sp = V_{u} * a$ $P_{u}-sp$ V_{u} Diseño de pernos. $V_{u}-bolt = \sqrt{P_{u-sp}^{2} + (V_{u}/3)^{2}}$ $N^{\circ} pernos$ Grado pernos: $d_{b}-sp$ F_{nv} $A_{b} = \pi * (d_{b-sp}/2)^{2}$ $\phi R_{n} = 0.75 * F_{nv} * A_{b}$ $Chequeo V_{u}-bolt \leq \phi R_{n}$ Geometría de la placa de cortante. l_{emin} aguj. std l_{emin} ran. hz. = l_{e} min +3/4 * d_{b-sp} s min = 2,67 * d_{b-sp} s h s_{vert} $L_{slot} = d_{b-sp} + 3 + 0.14 * s_{vert}$ L_{sp} b_{sp} t_{p} Chequeos en la placa de cortante. Acero de la placa: ASTM A572 Grado 50	1402 kgf * m 0 kgf 20.031 kgf 6.677 kgf 3 ASTM A325 3/4" 3.793 kgf/cm² 285 mm² 8.107 kgf ok 26mm 40mm 51mm 30mm 45mm 55mm 30mm 170mm 115mm 10mm	 (13,75 kN*m) AISC 358 12.9 Paso 15 (196,34 kN) (65,48 kN) AISC 358 Ec. 12.9-22 (371,97 MPa) AISC 360 Tabla J3.2 (79,50 kN) AISC 360 J3-1 AISC 360 Tabla J3.4 AISC 360 Tabla J3.5 AISC 360-16 J3.3 AISC 358 Ec. 12.9-23M Largo de la placa Ancho de la placa Espesor de la placa

· · · · · · · · · · · · · · · · · · ·	5	
$A_g = L_{sp} * t_p$ $A_g = L_{sp} * t_p$	$1.700 \ mm^2$	(527 20 kN) AISC 260 14 1
$\varphi_{Rn} = 0.50 * Py * Ag$ $Chaquag P_{M-sn} \leq \phi_{Rn}$	ok	(327,39 KN) AISC 300 J4-1
Chequeo - u-sp – +n Estado límite: fluencia por cortante	0K	
$A_{gv} = L_{sp} * t_p$	$1.700 \ mm^2$	
$\phi R_n = 1,00 * 0,60 * F_y * A_{gv}$	35.853 kgf	(351,60 kN) AISC 360 J4-3
$Chequeo V_u \leq \phi R_n$	ok	
Estado límite: fractura por tensión.		
$a_{agujeros=d_{b-sp}+2}mm$	22 mm	AISC 360 Tabla J3.3
$A_{e} = [L_{sp} - 3 * (d_{agujeros} + 2)] * t_{p}$	$980 mm^2$	(220 40 kN) AISC 260 14 2
$\varphi R_n = 0, 75 * F_u * A_e$	55.569 Kyj	(329,40 KN) AISC 300 J4-2
$Lhequeo + u - sp - \varphi h$ Estado límite: fractura por cortante	0K	
$A_{nv} = [L_{sn} - 3 * (d_{aquieros} + 2)] * t_n$	$980 mm^2$	
$\phi R_n = 0.75 * 0.60 * F_u * A_{nv}$	20.153 kgf	(197,63 kN) AISC 360 J4-4
Chequeo $V_u \leq \phi R_n$	ok	
Estado límite: bloque de cortante (caso 1).	_	
$A_{nt1} = [L_{sp} - 2 * s - 2 * (d_{agujeros} + 2)] * t_p$	$620 \ mm^2$	
$A_{gv1} = 2 * h * t_p$	$900 \ mm^2$	
$A_{nv1} = 2 * [h - (L_{slot} + 2)/2] * t_p$	$580 mm^2$	
$\phi R_n = 0.75 * (0.60 * F_u * A_{nv1} + F_u * A_{nt1} \le 0.60 * F_y * A_{gv1}$	33 178 kaf	(325 37 kN) AISC 360 14-5
$+F_u * A_{nt1}$	55.176 Kgj	(323,37 KN) AISC 500 J 4-5
Chequeo $P_{u-sp} \leq \phi R_n$	ok	
Estado límite: bloque de cortante (caso 2). Para fuerza P_{u-sp}		
$A_{nt2} = [L_{sp} - 2 * s - 2 * (d_{agujeros} + 2)] * t_p$	$800 \ mm^2$	
$A_{gv2} = 2 * h * t_p$	$450 \ mm^2$	
$A_{nv2} = 2 * [h - (L_{slot} + 2)/2] * t_p$	$290 \ mm^2$	
$\phi R_n = 0.75 * (0.60 * F_u * A_{nv1} + F_u * A_nt1 < 0.60 * F_v * A_{nv1}$	22 202 1 6	
$+F_u * A_{nt1}$	33.383 kgf	(327,38 kN) AISC 360 J4-5
Chequeo $P_{u-sp} \leq \phi R_n$	ok	
Para fuerza Vu		
$A_{nt2=[h-(L_{slot}+2)/2]} * t_p$	$290 \ mm^2$	
$A_{gv2=(L_{sp}-s)*t_p}$	$1400 \ mm^2$	
$A_{nv2} = [L_{sn} - s - 2.5 * (d_{aquieros} + 2)] * t_n$	$800 \ mm^2$	
$\phi R_n = 0.75 * (0.60 * F_u * A_{nv2} + F_u * A_{nt2})$	06 201 h = 6	(259.91.1 N) A19/2 260.14.5
$\leq 0,60 * F_y * A_{gv2} + F_u * A_{nt2})$	26.391 Kgj	(258,81 KN) AISC 360 J4-5
Chequeo $V_u \leq \phi R_n$	ok	
Estado límite: tensión y flexión combinadas.	1 500 2	
$Ag = L_{sp} * t_p$ $Z = (t_{sp} + L_{sp}^2)/4$	$1.700 \ mm^2$	
$\begin{aligned} L_X &= (\iota_P * L_S p^-)/4 \\ \sigma R_n &= 0.90 * F_n * 4\sigma \end{aligned}$	72.230 mm ² 53 779 kaf	(527 39 kN)
$\phi M_n = 0.90 * F_v * Z_x$	2285 kaf * m	(22.40 kN*m)
$P_{u-sp}/\phi R_n + M_{u-sp}/\phi M_n \le 1$	0,61 ok	
Estado límite: aplastamiento ejercido por los pernos (para fuer	rza Pu-sp).	
$l_c = h - d_{agujeros}/2$	34 mm	
$R_n = 1,2 * l_c * t_p * F_u$	18.645 kgf	(182,84 kN) AISC 360 J3-6c
$Lim R_n = 2,4 * d_{b-sp} * t_p * F_u$	21.936 kgf	(215,12 kN) AISC 360 J3-6a
$\phi R_n = 0.75 * R_n$	13.983 kgf	(137,13 kN)
Chequeo $P_{u-sp} \leq \phi R_n$	ok	
Estado límite: aplastamiento ejercido por los pernos (para fuer	rza Vu).	
$l_{cb}(borde) = s - d_{agujeros/2}$	19mm	
$l_{ci}(interno) = s_{vert} - d_{agujeros}$	33mm	
$R_n(borde) = 1, 2 * l_{cb} * t_p * F_u$	10.419 kgf	(102,17 kN) AISC 360 J3-6c
$R_n(interno) = 1.2 * l_{ci} * t_p * F_u$	18.097 k <i>gf</i>	(177,47 kN) AISC 360 J3- 6c
$\lim R_n = 2,4 * d_{b-sp} * t_p * F_u$	21.936 kgf	(215,12 kN) AISC 360 J3- 6a
$\varphi R_n = 0.75 * (R_n(borde) + 2 * R_n(interno))$	54.959 kgf	(342,83 KN)
$C_nequeo v_u \ge \varphi \kappa_n$ Diseño de la soldadura	UK	
Tipo de soldadura: soldadura de filete doble		
Tipo de electrodo: E70XX		
$A_e = A_{nv} = L_{sp} * t_p$	$1.700 \ mm^2$	

<u>Revista Gaceta Técnica</u>. Artículo de Investigación. 25(1), 51-77, enero-junio, 2024 ISSN: 2477-9539

$ {\phi R_n(tensión) = 0.75 * F_u * A_e} \\ \phi R_n(corte) = 0.75 * 0.60 * F_u * A_{nv} \\ F_nwt = 0.60 * F_{EXX} * (1.0 + 0.50 * sen^{1.5}90) $	58.268 kgf 34.961 kgf 4.432 kgf/cm ²	(571,41 kN) AISC 360 J4-2 (342,85 kN) AISC 360 J4-2 (434,63 MPa)
$F_{nwc} = 0.60 * F_{EXX} * (1.0 + 0.50 * sen^{1.5}0)$ $w_{req}(tensión) = \phi R_n(tensión)/(2 * 0.707 * L_{sp} * F_{nwt})$	2.955 kgf/cm ² 7,29 mm	(289,79 MPa)
$w_{req}(corte) = \phi R_n(corte)/(2 * 0.707 * L_{sp}* F_{nwc})$ $w_{min}(norma) = 5/8 * t_p$ W_{min}	6,56 mm 6,25 mm 8mm	AISC 358 12.9 Paso 15.4
$w = F_{nw} = 0,60 * F_{EXX} * (1,0+0,50 * sen^{1.5}90) \phi R_{n-soldadura} = 2 * 0.707 * w * L * F_{nw}$	10mm ok 4.429 <i>kgf/cm</i> ² 103.333	(434,34 MPa) AISC 360 J2-5 (1.013 kN) AISC 360 J2-4
Chequeo $m \acute{a} x \phi R_n \leq \phi R_n$ —soldadura Chequeos en el alma de la viga. Acero: ASTM A572 Grado 50	ok	
t _w h Estado límite: fluencia por tensión.	8mm 334,6mm	
$A_g = h * t_w$ $\phi R_n = 0.90 * F_y * A_g$ Chequeo $P_{u-sp} \le \phi R_n$ Estado límite: fluencia por cortante	2.676,8 mm ² 84.680 kgf ok	(830,43 kN) AISC 360 J4-1
$A_{gv} = h * t_w$ $\phi R_n = 1,00 * 0,60 * F_y * A_{gv}$ Chequeo $V_u \le \phi R_n$ Estado límite: fractura por tensión.	2.676,8 mm ² 56.453 kgf ok	(553,61 kN) AISC 360 J4-3
$d_{agujeros=d_{b-sp}+2mm}$ $A_{c}=[h-3*(d_{agujeros}+2)]*t_{u}$	22 mm 2 100 8 mm ²	AISC 360 Tabla J3.3
$\phi R_n = 0.75 * F_u * A_e$ Chequeo $P_{u-sn} \le \phi R_n$	72.004 <i>kgf</i> ok	(706,12 kN) AISC 360 J4-2
Estado límite: fractura por cortante. $A_{nv} = [h - 3 * (d_{agujeros} + 2)] * t_w$ $\phi R_n = 0.75 * 0.60 * F_u * A_{nv}$ Chequeo $V_u \le \phi R_n$	2.100,8 mm ² 43.202 kgf ok	(423,67 kN) AISC 360 J4-4
Estado límite: bloque de cortante (caso 1). $Ant1=[2 * Svert - 2 * (d_{agujeros} + 2)] * t_w$ $Agv1=2 * (a - t_{flange}) * t_w$	496 mm ² 720 mm ²	
$A_{nv1} = 2 * [a - t_{flange} - 0.5 * (d_{agujeros} + 2)] * t_{w}$ $\phi R_{n} = 0.75 * (0.60 * F_{u} * A_{nv1} + F_{u} * A_{nt1})$ $\leq 0.60 * F_{y} * A_{gv1} + F_{u} * A_{nt1})$ $Charmon P_{u} = m \leq \phi R_{m}$	27.858 kgf	(273,19 kN) AISC 360 J4-5
Estado límite: bloque de cortante (caso 2). Para fuerza P_{u-sp} $Ant2 = [2 * s_{vert} + (h - 2*s_{vert})/2 - 2.5*$ (d. aquieros + 2)] * tw	$1.298,4 \ mm^2$	
$A_{gv2=}(a - t_{flange}) * t_{w}$ $A_{nv2=}[a - t_{flange} - 0.5 * (d_{agviares} + 2)] * t_{w}$	$360 \ mm^2$ $264 \ mm^2$	
$\phi R_n = 0.75 * (0.60 * F_{u*} A_{nv2} + F_{u*}^* A_{nt2} \le 0.60 * F_y * A_{gv2} + F_u * A_{nt2})$	49.931 kgf	(489,66 kN) AISC 360 J4-5
Chequeo $P_{u-sp} \leq \phi R_n$ Para fuerza V_u	ok	
$A_{nt2} = [a - t_{flange} - 0.5 * (d_{agujeros} + 2)] * t_w$ $A_{gv2} = [2 * s_{vert} + (h - 2 * s_{vert})/2] * t_w$	264 mm ² 1.778,4 mm ²	
$A_{nv2} = [2 * s_{vert} + (h - 2 * s_{vert})/2 - 2,5* (d_{agujeros} + 2)] * t_W$	$1.298,4 mm^2$	
$\phi R_n = 0.75 * (0.60 * F_u * A_{nv2} + F_u^* A_n t_2 \le 0.60 * F_y * A_{gv2} + F_u * A_{nt2})$ Chequeo $V_u \le \phi R_n$	35.750 <i>kgf</i> ok	(350,59 kN) AISC 360 J4-5
Estado límite: aplastamiento ejercido por los pernos (para fuerz $l_c = a - t_f lange - d_agujeros/2$ $R_c = 1.2 * l_c * t_c * F_c$	za Pu–sp). 34 mm 14 916 kaf	(146 28 KN) ATCC 260 12 6-
$Lim R_n = 2.4 * d_{b-sp} * t_w * F_u$	17.548 kgf	(172,09 kN) AISC 360 J3-6a

<u>Revista Gaceta Técnica</u>. Artículo de Investigación. 25(1), 51-77, enero-junio, 2024 ISSN: 2477-9539

<i>Jesus marta, Salarra 1</i> .	langrean, Onio, I anni	10
$\phi R_n = 0.75 * R_n$	11.187 kgf	(109,71 kN)
Chequeo $P_{u-sp} \le \phi R_n$	ok	
Estado límite: aplastamiento ejercido por los pernos (para fue	rza Vu).	
$l_{cb}(borde) = (h - 2 * s_{vert})/2 - 0.5 * d_{agujeros}$	101.3 mm	
$l_{ci}(interno) = s_{vert} - d_{agujeros}$	33 mm	
$R_n(borde) = 1,2 * l_{cb} * t_w * F_u$	44.442 kgf	(435,83 kN) AISC 360 J3-6c
$R_n(interno) = 1.2 * l_{ci} * t_w * F_u$	14.477 kgf	(141,97 kN) AISC 360 J3-6c
$Lim R_n = 2,4 * d_{b-sp} * t_w * F_u$	17.548 kgf	(172,09 kN) AISC 360 J3-6a
$\phi R_n = 0.75 * (R_n(borde) + 2 * R_n(interno))$	34.876 kgf	(342,02 kN)
Chequeo $V_u \leq \phi R_n$	ok	
Diseño del recorte en el alma de la viga.		
^c mín= le	26 mm	AISC 360 Tabla 3.4
$c_{max} = a - t_{flange}$	45 mm	
$c_{min} \le c \le c_{max}$	40 mm	
14. Chequeo de la zona panel		
A.	$198 \ cm^2$	
F_{y}	$3515 kaf/cm^2$	(344 70 MPa)
P_r	150.000 kaf	(1.471 kN)
$P_{\nu}=F_{\nu}*A_{a}$	695.970 kaf	(6.825 kN)
b _{hf}	170 mm	
bcf	300 mm	
d_b	360 mm	
d_c	400 mm	
t_{bf}	12,7 mm	
tcf	24 mm	
tw	13,5 mm	
α	1,0	
No se considera el efecto de la deformación inelástica de la zo Caso: $\alpha P_r \leq 0.4P_y$	na panel en la estabilidad	del pórtico en el análisis.
$\phi R_n = 0.90 * 0.60 * F_y * d_c * t_w$	102.497 kgf	(1.005 kN) AISC 360 J10-9
Chequeo $P_{r-link} \leq \phi R_n$	ok	
No se requiere plancha de refuerzo para la zona panel.		
15. Chequeos del alma de la columna		
Fvw	$3.515 \ kgf/cm^2$	(344,70 MPa)
E	$2.100.000 \ kgf/cm^2$	(205939,70 MPa)
k	51 mm	
l_b	13 mm	
t _w	13,5 mm	
t_f	24 mm	
Q_f	1,0	
Estado límite: fluencia local		
Caso: la fuerza concentrada es aplicada a una distancia del ex	xtremo de la columna may	or a su altura <i>dc</i> .
$\phi R_n = 1,00 * F_{yw} * t_w * (5k + l_b)$	127.172 kgf	(1.247 kN) AISC 360 J10-2
$Chequeo = P_{r-link} \le \phi R_n$	ok	
Estado límite: aplastamiento local		
Caso: la fuerza concentrada es aplicada a una distancia del es $\phi R_n{=}0{,}75$	xtremo de la columna may	or a <i>dc</i> /2.

$$* 0.80t_w^2 \left[1 + 3\left(\frac{l_b}{d_c}\right) \left(\frac{t_w}{t_f}\right)^{1.5} \right] \sqrt{\frac{EF_{yw}t_f}{t_w}} Q_f$$

Chequeo $P_{r-link} \leq \phi R_n$

16. Chequeos del ala de la columna

 $b_{cf} = d_b + t_{stem} - \frac{g_{flange}}{2}$ $g = s_{flange}$ 105 mm

<u>Revista Gaceta Técnica</u>. Artículo de Investigación. 25(1), 51-77, enero-junio, 2024 ISSN: 2477-9539

130.417 kgf

ok

(1.279 kN) AISC 360 J10-4

$s = \frac{1}{2} \sqrt{b_{cf} * g}$	88,74mm	
$h_0 = d_b + t_{stem} + \frac{g_{flange}}{2}$	428 mm	
$c = g_{flange}$	110mm	
$t_{cfmin} = \sqrt{1,11} M_{pr} / \phi_d F_{yc} Y_c$	14 <i>mm</i>	AISC 358 Ec. 12.9-24
t_{cf}	24mm	
Chequeo $t_{cf} \ge t_{cfmin}$	ok	
No se requieren planchas de continuidad.		

4.4. Comparación de Resultados

Una vez obtenidos los resultados de diseño por las dos vías, se tomó nota de todos los parámetros de diseño calculados por el programa para luego compararlos con los conseguidos mediante el cálculo manual, observados en la Tabla 1.

 Tabla 1. Cuadro de resumen comparativo entre resultados obtenidos manualmente y el software CONESTRONG. Fuente los autores

CONESTRONG. Fuenie los autores			
Parámetro	Diseño	Diseño	Diferencia
	manual	CONESTRONG	(%)
P'(y-link) (kg-f)	30864	30864	0,0000
A'(y-link) (mm ²)	878	877	0,1139
L(col-side) min (mm)	70	70	0,0000
b(yield, req'd) (mm)	68	68	0,0000
b(yield) max (mm)	83	83	0,0000
P(ye-link) (kg-f)	35185	35215	0,0853
P(r-link) (kg-f)	49904	50109	0,4108
N° pernos req, Yield-Link - viga	6	6	0,0000
Le min Yield-Link - viga (mm)	29	29	0,0000
s min Yield-Link - viga (mm)	60	60	0,0000
L(bm-side) (mm)	220	220	0,0000
g(stem) (mm)	85	85	0,0000
φRn Fluencia áre gruesa Yield-Link (kg-f)	67857	67915	0,0855
φRn Fractura área neta Yield-Link (kg-f)	50350	50724	0,7428
φRn Bloque de cortante 1 Yield-Link (kg-f)	87778	88473	0,7918
φRn Bloque de cortante 2 Yield-Link (kg-f)	69064	69598	0,7732
φRn Bloque de cortante 3 Yield-Link (kg-f)	85550	86236	0,8019
φRn Aplastamiento pernos Yield-Link (kg-f)	124045	125623	1,2721
φRn Aplastamiento pernos ala viga (kg-f)	137898	139881	1,4380
φRn Bloque de cortante ala viga (kg-f)	181208	184949	2,0645
rt (kg-f)	12476	12527	0,4088
Le min Yield-Link - columna (mm)	26	26	0,0000
s(flange) (mm)	105	105	0,0000
g(flange) (mm)	110	110	0.0000
t(flange) min (mm)	23	23	0,0000
oRn Fluencia por cortante Yield-Link (kg-f)	173992	174141	0.0856
oRn Fractura por cortante Yield-Link (kg-f)	116192	120333	3.5639
P(r-weld) (kg-f)	117632	118113	0.4089
φRn soldadura Yield-Link (kg-f)	154999	155152	0,0987
Mínimo largo BRP (mm)	185	185	0.0000
Ancho mínimo espaciadores (mm)	32	32	0.0000
Ancho máximo espaciadores (mm)	47	47	0.0000
Δv (mm)	0.50	0.51	2.0000
$\Delta 0.04 \text{ (mm)}$	7.46	7.46	0.0000
Δ0.07 (mm)	13.06	13.06	0.0000
M(ve-link) (kg-f*m)	13124	13135	0.0838
M(pr-link) (kgf*m)	18614	18691	0.4137
۵/۲۰ (kgf*m)	10738	10747	0.0838
$\theta y (rad)$	0.003	0.003	0,0000

Jesús María, Saldivia Manfredil; Gino, Pannillo

Q (kgf/m)	4840	4840	0,0000
Vgravity (kgf)	13213	13213	0,0000
Vu (kgf)	20031	20060	0,1448
Σ Mpc (kgf*m)	180577	180771	0,1074
Muv (kgf*m)	5408	5416	0,1479
Σ Mpb (kgf*m)	24022	24107	0,3538
$\Sigma M^* pc / \Sigma M^* pb$	7.5	7.5	0,0000
M(u-sp) (kgf*m)	1402	1404	0,1427
V(u-bolt) (kgf)	6677	6687	0,1498
Le min placa de cortante (mm)	26	26	0,0000
s min placa de cortante (mm)	51	51	0,0000
L(slot) (mm)	30	30	0,0000
Longitud placa de cortante (mm)	170	170	0,0000
Ancho placa de cortante (mm)	115	115	0,0000
φRn Fluencia áre gruesa SP (tensión) (kgf)	53779	53825	0,0855
φRn Fractura área neta SP (tensión) (kgf)	33589	35134	4,5997
φRn Fluencia áre gruesa SP (cortante) (kgf)	35853	35884	0,0865
φRn Fractura área neta SP (cortante) (kgf)	20153	21080	4,5998
φRn Bloque de cortante 1 SP (kgf)	33178	34252	3,2371
φRn Bloque de cortante 2 SP (Vu) (kgf)	26391	27203	3,0768
φRn Bloque de cortante 2 SP (Pu-sp) (kgf)	33383	34693	3,9242
φRn Aplastamiento pernos SP (Vu) (kgf)	34959	36510	4,4366
φRn Aplastamiento pernos SP (Pu-sp) (kgf)	13983	14323	2,4315
Factor resistencia a tensión y flexión SP	0.61	0.61	0,0000
φRn Fluencia áre gruesa viga (tensión) (kgf)	84680	84753	0,0862
φRn Fractura área neta viga (tensión) (kgf)	72004	73425	1,9735
φRn Fluencia áre gruesa viga (cortante) (kgf)	56453	56502	0,0868
φRn Fractura área neta viga (cortante) (kgf)	43202	44055	1,9744
φRn Bloque de cortante 1 viga (kgf)	27858	28948	3,9127
φRn Bloque de cortante 2 viga (Vu) (kgf)	35750	36647	2,5091
φRn Bloque de cortante 2 viga (Pu-sp) (kgf)	49931	51186	2,5135
φRn Aplastamiento pernos viga (Vu) (kgf)	34876	35294	1,1985
φRn Aplastamiento pernos viga (Pu-sp) (kgf)	11187	11458	2,4225
w min soldadura placa cortante (mm)	8	8	0,0000
Recorte alma de la viga min (mm)	26	26	0,0000
Recorte alma de la viga max (mm)	45	45	0,0000
φRn zona panel (kgf)	102497	102585	0,0859
φRn fluencia local en el alma (kgf)	127172	127281	0,0857
φRn aplastamiento local en el alma (kgf)	130417	128578	1,4101
tcf min (mm)	14	14	0,0000

5. CONCLUSIONES

Gracias a la investigación llevada a cabo para el desarrollo del programa CONESTRONG se pudo conocer la importancia que tienen las conexiones precalificadas de la norma AISC 358-16, y las ventajas que ofrece el diseño de estructuras con este tipo de conexiones respaldadas por los últimos conocimientos adquiridos en cuanto al diseño seguro de estructuras de acero. El programa desarrollado ofrece asistencia de gran valor durante el diseño de conexiones precalificadas tipo *Simpson Strong-Tie Strong Frame*, su interfaz gráfica permite el ingreso de datos de manera sencilla, y en todas las fases del proceso se ofrece orientación sobre los parámetros de la conexión que se diseñan, y en caso de ingresar un valor fuera del rango permitido, el programa muestra una advertencia. La programación se basó en el procedimiento de diseño de la sección 12.9 de la norma AISC 358-16, la cual establece los lineamentos para el diseño de la conexión y los distintos valores sugeridos que se muestran en el programa.

Una vez desarrollado el software se pudo conocer la gran cantidad de detalles que se deben considerar cuando se diseña este tipo de conexión, y todos los chequeos que se deben llevar a cabo para sus distintos componentes a fin de garantizar un buen comportamiento. Realizar el diseño de este tipo de conexión de manera manual conlleva mucho tiempo, como se constató durante la realización del ejemplo de verificación independiente, y aumenta considerablemente la probabilidad de cometer errores, por el gran número de operaciones matemáticas que implica el diseño de la conexión y sus diversas verificaciones. Los resultados obtenidos al utilizar el programa fueron comparados con otra fuente independiente para validarlos: un diseño realizado de manera manual. Los resultados de esta validación fueron satisfactorios. Es por todo esto que se confirma la idea que se tenía al inicio de la elaboración de este trabajo: un programa constituye una herramienta valiosa para el diseño de este tipo de conexiones.

6. FINANCIAMIENTO

Propio de los autores.

7. CONFLICTO DE INTERÉS

Los autores declaran no tener ningún conflicto de interés.

8. CONTRIBUCIÓN DE LOS AUTORES

J.M.S.M desarrollo los algoritmos e interfaz gráfica del programa *CONESTRONG* destinado para fines académicos, y G.P asesorías para la compresión de la normativa *ANSI/AISC 358-16* y del programa *MATLAB*.

9. REFERENCIAS

- [1] J. Lee, "The Government's Response to the Northridge Earthquake", Washington, 1996
- [2] ANSI/AISC 358-16, Normativa Americana ANSI/AISC 358-16, "Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications", Chicago: American Institute of Steel Construction, 2016
- [3] ANSI/AISC 341-16, Seismic provisions for structural steel buildings, Chicago, Illinois, 2016
- [4] S. E. Pryor. Specialized seismic solution. Modern Steel Construction magazine. AISC, Febrero 2016

- [5] G. Pannillo, M. Chacón y H. Riera, "Desarrollo y Programación de Conexiones Sismorresistentes Tipo BFP y RBS Conforme a la Normativa ANSI/AISC 358-16", Revista Gaceta Técnica, 51-68, 2018
- [6] G. Pannillo, E. Vielma, W. Ocanto y J. Vielma, "Development and Programming of END-PLATE 4E and 8ES Connections in Accordance with the ANSI / AISC 358-16 Regulations", Revista Internacional de Ingeniería de Estructuras, Vol. 25(1), 39-60, 2020
- [7] G. Pannillo, O. Gutiérrez y J. Vielma, "Development and Programming of Double Tee (DOUBLE-TEE MOMENT CONNECTIONS) Sismorresistent Connections in Accordance with the ANSI / AISC 358-16 Regulations", Revista Internacional de Ingeniería de Estructuras, Vol. 23(2), 189-207, 2018
- [8] K. J. Chirino Alvarado y G. Pannillo, "Programa Kaiser Connex para conexiones sismorresistentes tipo Kaiser Bolted Bracket conforme a la normativa ANSI/AISC 358-16", *Gaceta Técnica*, vol. 24, n.º 2, pp. 23-43, jul. 2023