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Abstract

In this paper the Smith normal form of certain matrices is used to provide another char-

acterization for the surjectivity of one-dimensional linear cellular automata with multiple

local rules over the ring ZN of integers modulo N ≥ 2. We reached this goal through an

adaptation of a well known result of G. A. Hedlund which characterize the surjectivity of

general one-dimensional cellular automata.
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Autómatas celulares sobreyectivos multibanda y la forma normal de Smith

Resumen

En este art́ıculo es empleada la forma normal de Smith de ciertas matrices para ofrecer

otra caracterización de la sobreyectividad de autómatas celulares lineales unidimensionales

con múltiples reglas local sobre el anillo ZN de los enteros módulo N ≥ 2. El objetivo es

logrado mediante la adaptación de un conocido resultado de G. A. Hedlund que caracteriza

la sobreyectividad de autómatas celulares unidimensionales en general.

Palabras clave: Forma normal de Smith, autómatas celulares multibandas.

Introduction

Cellular Automata are dynamical systems which are the simplest idealization of space-time physical and
biological systems, also are considered in computer sciences to study several aspects related to parallel
computer devices, image processing, cryptography and analysis of universal model of computations.

The notion of cellular automaton was introduced by John von Newmann and Stanislaw Ulam in the
1940’s at Los Alamos National Laboratory. The configuration space where these dynamical systems act
consists of a discrete lattice L such that each cell of L holds a state taking on a value from a finite set A
called alphabet; thus a configuration is an element of the product space AL = {x : L → A}. Usually the
lattice L is the set of d-dimensional integers Zd (d ≥ 1); but finitely generated Abelian groups have been
considered. The temporary evolution of a cellular automaton F is given by its action on AL, updating
synchronously the states of the cells according to a local rule (the same for each cell and configuration),
which takes into account the states of a finite neighborhood of each cell on the previous time step, this
neighborhood is the shift, to the corresponding cell, of a fixed nonempty and finite subset of L. More
precisely, for any finite and nonempty subset U of L, a local rule is any function φ : AU → A, where
AU denotes the set of all function from U to A. So, the cellular automaton induced by U and φ is the
operator F : AL → AL defined, for each x ∈ AL and ℓ ∈ L, by

F (x)(ℓ) = φ (x|U+ℓ) , (1)
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where U + ℓ = {u+ ℓ : u ∈ U} and x|U+ℓ : U → A is given by x|U+ℓ(u) = x(u + ℓ), for every u ∈ U .
Classical examples of cellular automata are given by the shifts: for a fixed ℓ ∈ L, let σℓ be the

selfmapping of AL given, for every x ∈ AL and u ∈ L, by σℓ(x)(u) = x(u + ℓ). Clearly each σℓ is a
cellular automaton; the neighborhood in this case is U = {ℓ} and the local rule φ is the identity map
of A, notice that A{ℓ} is identified with the alphabet A. Observe that σL = {σℓ : ℓ ∈ L} is an Abelian
group under composition of maps, and the cellular automaton (1) can be written as

F (x)(ℓ) = φ (σℓ(x)|U ) , (2)

where σℓ(x)|U denotes the restriction of σℓ(x) to U .
G. A. Hedlund in [7] developed, in the context of symbolic dynamics, the theoretical formalism for

cellular automata on AZ, A any finite alphabet, as homeomorphisms of the shift dynamical system. In
that seminal Hedlund’s paper the product topology is considered on AZ to prove:

Theorem 0.1 (Hedlund) [7] A continuous transformation F : AZ → AZ is a cellular automaton if,
and only if, it commutes with the shift map σ : AZ → AZ given by σ(x)(n) = x(n + 1), for all x ∈ AZ

and all n ∈ Z.

The proof of this theorem in [7] contains the following fact: F : AZ → AZ is a cellular automaton if,
and only if, there are an integer r ≥ 0 (radius of F ) and a function φ : A2r+1 → A, such that for all
x ∈ AZ and n ∈ Z:

F (x)(n) = φ(x(n − r) · · ·x(n+ r)). (3)

In this notation the cartesian product A2r+1, of all ordered (2r+1)-blocks a−r · · · ar over A, is identified
with A[−r,r] = {ϕ : [−r, r] → A}, where [−r, r] denotes the interval over Z between −r and r.

Motivated by theorem 0.1 several extensions of the concept of cellular automata have been established.
One of them preserves the finite alphabet A and the lattice Z; but configurations states are updated by
means of a finite number of local rules. Actually, E. Lange et al. [9], see also [1] and [8], introduced the
following concept.

Definition 0.1 Given an integer m ≥ 2 and a finite alphabet A. A continuous transformation F :
AZ → AZ is called m-cellular automaton (also place-dependent cellular automaton or multiband cellular
automaton) if it commutes with σm, where σm is the m-th iteration of the shift map σ.

It can be showed that F : AZ → AZ is a m-cellular automaton if, and only if, F is a continuous
transformation and there are an integer r ≥ and m local rules φj : A2r+1 → A (0 ≤ j < m) such that,
for every x ∈ AZ and n ∈ Z:

F (x)(n) = φnm
(x|[n−r,n+r]), (4)

where x|[n−r,n+r] is the ordered (2r + 1)-block appearing in x between the cells n − r and n + r, and
nm is the integer n taken modulo m. Notice that the preceding statement is analogous to the Hedlund’s
characterization for cellular automata. It is not difficult to prove that any m-cellular automaton over A
is topologically conjugated to a cellular automaton over Am; obviously this property does not detract the
study of m-cellular automata over particular alphabets. Another kind of extensions are known. In [2] and
[10] are proved analogous versions of theorem 0.1 where the alphabet is any infinite discrete topological
space. On the other hand, Baas and Helvik [3] introduced the notion of higher order cellular automata,
which constitutes a generalization of the classical concept of cellular automata in a more general setting;
in this context there is no similar result to Hedlund’s theorem characterizing these mathematical objects
in terms of the shift dynamical systems.

In this paper we deal with m-cellular automata where the alphabet A is the ring ZN (integers modulo
N ≥ 2) and the local rules are additives; that is, for every 0 ≤ j < m there exist constants λj

−r, · · · , λ
j
r ∈

ZN such that the local rule φj : Z
2r+1
N → ZN is given by:

φj(a−r · · ·ar) =
∑

|i|≤r

λj
iai (mod N). (5)
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Clearly if one considers on Z
Z

N the algebraic structure of ZN -module, it follows from (4) and (5) that the
m-cellular automaton induced by these additive local rules is linear; this means: for all x, y ∈ Z

Z

N and all
λ ∈ ZN it holds

F (x+ λy) = F (x) + λF (y);

consequently F is called a linear m-cellular automaton.

Surjectivity and Smith’s normal form

In his remarkable article Hedlund [7] proved several necessary and sufficient conditions for the surjectivity
of cellular automata. For our purpose we make an adaptation of one of these equivalences. Assume
that F : AZ → AZ is the m-cellular automaton of radius r induced by the local rules φ0, · · · , φm−1.
Whatever the integers 0 ≤ j < m and s ≥ 0, the function φj,s : A2r+s+1 → As+1 is defined, for all
a0 · · · a2r+s ∈ A2r+s+1, as

φj,s(a0 · · · a2r+s) =

φj(a0 · · ·a2r)φ(j+1)m (a1 · · · a2r+1) · · ·φ(j+s)m (as · · ·a2r+s), (6)

where (j + 1)m, · · · , (j + s)m are, respectively, the integers j +1, · · · , j +m module N . The proof of the
next theorem is a slight modification of the Hedlund’s proof of theorem 5.1 in [7]; despite its simplicity
we include it.

Theorem 0.2 The m-cellular automaton F is surjective if, and only if, for all intergers 0 ≤ j < m and
s ≥ 0 the function φj,s is also surjective.

Proof 0.1 Take 0 ≤ j < m, s ≥ 0, w = w0 · · ·ws ∈ As+1 and z ∈ AZ such that z|[j,j+s] = w:
z(j + ℓ) = wℓ for all 0 ≤ ℓ ≤ s. Assume F surjective. Let x be a preimage of z under F ; consequently,
for all 0 ≤ j < m and 0 ≤ ℓ ≤ s:

F (x)(j + ℓ) = φ(j+ℓ)m(x(j + ℓ− r) · · ·x(j + ℓ+ r)) = wℓ;

thus, b = x(j − r) · · · x(j + ℓ+ r) satisfies φj,s(b) = w and φj,s is surjective.
On the other hand, assume that for all 0 ≤ j < m and s ≥ 0 the function φj,s is surjective. Take

z ∈ AZ and any integer ℓ ≥ 1; let bℓ = bℓ0 · · · b
ℓ
2(r+ℓ) in A2(r+ℓ)+1 such that φ(−ℓ)m,2ℓ(b

ℓ) = z|[−ℓ,ℓ] =

z(−ℓ) · · · z(ℓ). Taking, for example, xℓ ∈ AZ in such a way that xℓ|[−ℓ−r,ℓ+r] = bℓ and x(k) = 0 for all

k /∈ [−ℓ−r, ℓ+r], then F (xℓ)|[−ℓ,ℓ] = z|[−ℓ,ℓ]. From this fact it follows that F (AZ) is dense in AZ. Finally

the continuity of F and the compactness of AZ implies F (AZ) = AZ.

From now on we will consider linear m-cellular automata with local rules as in (5) to analyze the
surjectivity problem for this kind of dynamical systems. After Hedlund’s characterization for surjective
cellular automata, several contributions to the surjective problem for cellular automata are known in
different contexts. In the particular case of linear cellular automata, contributions of Itô et. al. [4] are
pioneers. In this paper the authors make use of a Laurent polynomial representation of the local rule
and Laurent formal series representation of the configuration space to study linear cellular automata over
Zm. In fact, with these tools they showed, among other facts, the following result.

Theorem 0.3 (Itô et al., [4]) The linear cellular automaton of radius r over ZN whose local rule is
given by the coefficients λ−r, · · · , λr is surjective if, and only if, gcd(λ−r, · · · , λr, N) = 1.

Kari in [8] slightly modifies both polynomial and series representations in [4] to provide a characteri-
zation of surjective linear m-cellular automata over any commutative ring with identity, see Section 3 in
[8] for details. Instead these tools we will use Smith’s normal form to obtain another characterization of
linear m-cellular automata over ZN ; actually, it works over any commutative ring with identity.

The criterion of Itô et al. is not a sufficient condition for the surjectivity of linear m-cellular automata.
The following example shows this claim.

19



Surjective multiband linear cellular automata and Smith’s normal form. Arcaya,I.; Romero, N.

Example 0.1 Take A = Z4 and consider local rules φ0, φ1 : A3 → A given by

φ0(a−1, a0, a1) = 3a1 (mod 4) and φ1(a−1, a0, a1) = 3a0 (mod 4).

Clearly gcd(λi
−1, λ

i
0, λ

i
1, 4) = 1 for i = 0, 1; however, the 2-cellular automaton F induced by these rules is

not surjective. Observe that for all x ∈ AZ and n ∈ Z, F (x)(n) =

{
3x(n+ 1) (mod 4), if n is even

3x(n) (mod 4), if n is odd
;

thus, it is easy to verify that any configuration y = (y(n))n∈Z ∈ Z
Z

4 with y(0) = 3 and y(1) = 1 has no
preimages.

Let F be a linear m-cellular automaton over ZN with local rules φ0, · · · , φm−1 as in (5). It follows
from theorem 0.2 and (6) that F is surjective if, and only if, for all integers 0 ≤ j < m and s ≥ 0 and
every column vector b ∈ Z

s+1
N , the system of linear equations modulo N

Aj,sx = b (mod N), (7)

has solutions in Z
2r+s+1
N , where Aj,s is the (s+ 1)× (2r + s+ 1) matrix

Aj,s =




λj
−r λj

1−r · · · λj
r 0 0 · · · 0

0 λ
(j+1)m
−r · · · λ

(j+1)m
r−1 λ

(j+1)m
r 0 · · · 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 · · · 0 λ
(j+s)m
−r λ

(j+s)m
1−r · · · λ

(j+s)m
r


 .

The main result of this paper is the following.

Theorem 0.4 The linear m-cellular automaton F is surjective if, and only if, for all the Smith normal
form of each matrix Aj,s has full rank and its non-zero coefficients are coprimes to N .

In order to prove this theorem we recall some facts dealing with Smith’s normal form, which will all
be found, for example, in [5], [6] and [11]. First of all some notations. For any pair of positive integers
p and q, p | q indicates that p is a divisor of q, Mp×q(Z) and Mp×q(ZN ) denote the sets of all p × q
matrices with coefficients in Z and ZN , respectively. Let A be a matrix in Mp×q(Z) with p ≤ q. Given
1 ≤ k ≤ p, A(k) is the set of all k × k submatrices of A, dk(A) is the kth determinantal divisor of A,
that is dk(A) = gcd{det(B) : B ∈ A(k)}, where gcd means greatest common divisor and det(B) denotes
the determinant of B; if k = rank(A), rank of A, then dk(A) is denoted by d(A). It is well known that
dk−1(A) | dk(A) for all 2 ≤ k ≤ rank(A), and rank(A) = ℓ if, and only if, dk(A) 6= 0 for each 1 ≤ k ≤ ℓ
and det(B) = 0 if B ∈ A(k) and k > ℓ. Use also use the column notation, that is, if a1, · · · , aq are the
columns of A, and b1, · · · , br are the columns of B ∈ Mp×r(Z), then [A,B] is the matriz with columns
a1, · · · , aq, b1, · · · , br; finally, if J ⊂ {1, · · · , p}, A(J) is the matrix made up of the rows of A indicated
by J .

A matrix U ∈ Mp×p(Z) is called unimodular whenever det(U) = ±1, and B ∈ Mp×q(Z) is equivalent
to A ∈ Mp×q(Z) if there exist unimodular matrices L ∈ Mp×p(Z) and R ∈ Mq×q(Z) such that B = LAR.
Unimodularity induces a partition on Mp×q(Z) where determinantal divisors are invariants.

Theorem 0.5 (Smith’s normal form) Let A be an p× q integer matrix. If 1 ≤ ran(A) = ℓ ≤ p, then
there exist unimoldular matrices L ∈ Mp×p(Z) and R ∈ Mq×q(Z) such that

S = LAR =




a1 0 · · · 0 0 · · · 0
0 a2 · · · 0 0 · · · 0
...

...
. . .

...
... · · ·

...
0 0 · · · aℓ 0 · · · 0
0 0 · · · 0 0 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 · · · 0 0 · · · 0




, (8)
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where a1 ≥ 1, a1 | a2 | · · · | aℓ, and dk(A) =
∏ℓ

i=1 ai, for all 1 ≤ k ≤ ℓ. The matrix S is called the Smith
normal form of A.

The next statement establishes a criterion for the existence of solutions with coefficients in Z for any
system of linear equations over Z.

Theorem 0.6 Given A ∈ Mp×q(Z) and b ∈ Z
p, the equation Ax = b has integers solutions if, and only

if, the following conditions hold:

(i) rank(A) = rank([A, b]).

(ii) There exists J ⊂ {1, · · · , p} with cardinal equal to rank(A) in such a way that rank(A) = rank(A(J))
and d(A(J)) = d([A, b](J)).

Observe that the rank is invariant for equivalent matrices, and if L and R are unimodular matrices
and S = LAR is the Smith normal form of A ∈ Mp×q(Z), then x0 ∈ Z

q is a solution of Ax = b if, and
only if, y0 = R−1x0 is a solution of Sy = c, where c = Lb. In particular, this fact implies that Ax = b has
integer solutions for all b ∈ Z

p if, and only if, A has full rank and d(A) = 1. It is also important to note
that from the criterion in theorem 0.6 it follows that if A ∈ Mp×q(ZN ) and b ∈ Z

p
N , then the system of

linear equations Ax = b has solutions with coefficients in ZN if, and only if, [A,NIp]x = b has solutions
in Z; here NIp is the p × p scalar matrix with N in the diagonal; therefore, as [A,NIp] has full rank,
then Ax = b has solutions with coefficients in ZN for all b ∈ Z

p
N if, and only if, d([A,NIp]) = 1.

Proof of Theorem 1 Let F be the linear m-cellular automaton whose local rules are given by (5).
According to the previous comments, if F is surjective, then d([Aj,s, NIs+1]) = 1 for all integers 0 ≤ j < m

and s ≥ 0. In this case the Smith normal form of [Aj,s, NIs+1] is S̃j,s =




1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
...

...
. . .

...
... · · ·

...
0 0 · · · 1 0 · · · 0


 .

Let us see that the Smith normal form Sj,s of Aj,s has full rank and its non-zero coefficients are coprimes
to N . First we suppose that the rank of Sj,s is not full, i.e. 0 < ℓ = rank(Sj,s) < s + 1. Then there
exist unimodular matrices L and R such that Sj,s = LAj,sR is as in (8). Consider the unimodular matrix

R̃ =

(
R 0
0 L−1

)
; it is easy to check that

L[Aj,s, NIs+1]R̃ =




a1 · · · 0 0 · · · 0 N · · · 0 0 · · · 0
...

. . .
...

... · · ·
...

...
. . .

...
... · · ·

...
0 · · · aℓ 0 · · · 0 0 · · · N 0 · · · 0
0 · · · 0 0 · · · 0 0 · · · 0 N · · · 0
... · · ·

...
... · · ·

...
... · · ·

...
...

. . .
...

0 · · · 0 0 · · · 0 0 · · · 0 0 · · · N




.

After a finite number of elementary column operations (interchanging columns) the matrix L[Aj,s, NIs+1]R̃
can be reduced to the form




a1 · · · 0 0 · · · 0 0 · · · 0 N · · · 0
...

. . .
...

... · · ·
...

...
. . .

...
...

. . .
...

0 · · · aℓ 0 · · · 0 0 · · · 0 0 · · · N
0 · · · 0 N · · · 0 0 · · · 0 0 · · · 0
... · · ·

...
...

. . .
...

... · · ·
...

...
. . .

...
0 · · · 0 0 · · · N 0 · · · 0 0 · · · 0




,

21



Surjective multiband linear cellular automata and Smith’s normal form. Arcaya,I.; Romero, N.

which is not equivalent to S̃j,s because N ≥ 2 has no multiplicative inverse in Z, in this way we conclude
that rank(Sj,s) = rank(Aj,s) = s+ 1. Now we will prove that gcd(aℓ, N) = 1 for all 1 ≤ ℓ ≤ s+ 1. It is
clear that

[Aj,s, NIs+1](s+ 1) =

s⋃

ℓ=1

Aℓ
j,s ∪ Aj,s(s+ 1) ∪ {NIs+1},

where Aℓ
j,s is the set of all (s + 1)× (s + 1) submatrices of [Aj,s, NIs+1] with s + 1 − ℓ columns of Aj,s

and ℓ columns of NIs+1. Thus

1 = d([Aj,s, NIs+1]) = gcd{det(B) : B ∈ [Aj,s, NIs+1](s+ 1)}

= gcd(d(Aj,s), N
s+1, Nsd1(Aj,s), · · · , Nds(Aj,s))

= gcd(d(Aj,s), Ngcd(Ns, Ns−1d1(Aj,s), · · · , Nds−1(Aj,s), ds(Aj,s))),

which implies that gcd(d(Aj,s), N) = 1. But d(Aj,s) =
∏s+1

ℓ=1 aℓ, consequently it holds gcd(aℓ, N) = 1 for
all 1 ≤ ℓ < s+ 1.

Suppose on the other hand that the Smith normal form of Aj,s,

Sj,s = LAj,sR =




a1 0 · · · 0 0 · · · 0
0 a2 · · · 0 0 · · · 0
...

...
. . .

...
... · · ·

...
0 0 · · · aℓ 0 · · · 0


 ,

satisfies aℓ ≥ 1 and gcd(aℓ, N) = 1 for all 1 ≤ ℓ ≤ s+ 1. Let R̃ =

(
R 0
0 L−1

)
be as above, then

L[Aj,s, NIs+1]R̃ =




a1 · · · 0 0 · · · 0 N · · · 0
...

. . .
...

... · · ·
...

...
. . .

...
0 · · · as+1 0 · · · 0 0 · · · N


 .

Take αℓ, βℓ ∈ Z (1 ≤ ℓ ≤ s + 1) such that αℓaℓ + βℓN = 1 (recall that gcd(aℓ, N) = 1). Now consider

the matrix R̂ =



A 0 NIs+1

0 I2r 0
B 0 −D


, where I2r is the 2r × 2r identity matrix, and A, B and C are the

diagonal matrices:

A = diag(α1, · · · , αs+1), B = diag(β1, · · · , βs+1) and D = diag(a1, · · · , as+1).

It is no difficult to show that R̂ is equivalent to




R1 0 0 · · · 0
0 R2 0 · · · 0
... · · ·

. . . · · ·
...

0 · · · 0 Rs+1 0
0 · · · 0 0 Ik



, where Rℓ =

(
αℓ N
βℓ −aℓ

)

for all 1 ≤ ℓ ≤ s + 1. As detRℓ = −1 for each value of ℓ, it follows that R̂ is unimodular. Finally, a

straightforward computation shows that L[Aj,s, NIs+1]R̃R̂ =




1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
...

...
. . .

...
...

...
...

0 0 · · · 1 0 · · · 0


 , establishing

the surjectivity of F because d([Aj,s, NIs+1]) = 1.
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