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Abstract

In a Tikhonov regularization scheme to solve discrete linear ill-posed problems, selecting

the parameter value is a key task. We use Wolfe inexact search on the L−curve to choose a

λ regularization parameter value far from critical areas of the L−curve. Numerical results

are shown comparing the inexact scheme with other exact searches.
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Búsquedas sobre curvas inexactas

Resumen

En un esquema de regularización para resolver problemas inversos lineales dicretos, la

selección del valor del parámetro es una tarea clave. Usamos la busqueda inexacta de

Wolfe sobre la curva L, para elegir un valor del parámetro de regularización λ lejos de

áreas cŕıticas de la curva L. Se muestran resultados numéricos que comparan el esquema

inexacto con otras búsquedas inexactas.

Palabras clave: Curva L, regularización de Thikonov, búsquedas inexactas.

Introduction

Many problems encountered in science and engineering are ill posed inverse problems. Given an n× N

matrix M and a data vector y ∈ R
n, a discrete linear inverse problem involves solving approximately the

following system of linear equations:
Mx = y. (1)

According to Hadamard, an inverse problem is well posed if it satisfy the requirements of existence,
uniqueness and stability of it solutions. If one of these requirements is not satisfied, the problem is said
to be ill-posed. A linear least-squares solution for system (1) is a solution for

minimizex∈RN
1
2‖y −Mx‖2. (2)

When a linear inverse problem is ill-posed, the least squares solution for problem (2) is not satisfactory,
frequently giving poor reconstructions. To overcome these difficulties Regularization schemes are intro-
duced (for regularization schemes see for example [2]). Regularization methods for computing stable
solutions to inverse problems involve a trade-off between the “size” of the regularization solution (or it
difference with a known default solution) and the quality of the fit that it provides to the given data.
The well known Tikhonov regularization scheme (see [2]) consists in replacing the least squares problem
(2) by

minimizex∈RN
1
2‖y −Mx‖2 + λ

2 ‖L(x− xc)‖
2 (3)
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where λ is called the regularized parameter. Here, the “size” of the regularized solution is, for a given
matrix L, measured by ‖L(x− xc)‖; while the fit is measured by ‖y −Mx‖. xc is a priory estimate of x
which represents our previous knowledge about the solutions. If no a priori information is available, xc

is set to zero.
Let us denote by x(λ) the unique optimal solution for problem (3). Regularization is necessary when

solving inverse problems because the “naive” least squares solution (λ = 0), denoted by xLS , is completely
dominated by contributions from data errors and rounding errors. Regularization is introduced to damp
these contributions and keep the norm ‖L(x − xc)‖ with reasonable size. If too much regularization,
or damping, is imposed on the solution, then it will not fit the given data y properly and the residual
‖y − Mx‖ will be too large. On the other hand, if too little regularization is imposed then the fit will
be good but the solution will be dominated by the contributions from the data errors, so ‖L(x − xc)‖
will be too large. The regularization parameter λ plays an important roll in balancing these norms. An
important device used to choose a proper value for parameter λ is the so called L−curve criterium (see
[2]). The L−curve is the plot (‖y − Mx(λ)‖, ‖L(x(λ) − xc)‖) for λ > 0. It is a curve parametrized
by λ. It help us to control the tradeoff between these two quantities. The L−curve is of our interest
because it shows how the regularized solution changes as the regularization parameter λ changes. A
distinct L−shaped corner of the L−curve is located exactly where the solution x(λ) changes, form being
dominated by the regularization errors of the data. That is why the corner of the L−curve corresponds
to a good balance between the minimization of the sizes, and the corresponding regularization parameter
λ is a good one.

When calculating points x(λ) on the L−curve, we should solve the optimization problem (3) for each
value of λ. A search on the curve to choose λ on the corner involves possibly an iterative procedure where
is defined a sequence λk which converges to λ∗ on the corner. When the inverse problem is large, it is
desirable to choose λ∗ in a few number of these expensive steps. Inexact searches exist in the optimization
literature (see for example [5]). The objective of an inexact search is to look for an approximated optimal
solution in a small number of steps, when accuracy is not necessary. A possible large search interval is
chosen where the minimizer lies and ensuring sufficient decreasing of the objective function. Searches like
Armijo search, or Wolfe search use first derivatives. In this paper we shall implement the Wolfe inexact
search on the rotated L−curve to choose a fast approximated λ∗. We compare the number of iterations
in other searches, like bisection, and demonstrate finite convergence of the procedure.

A standard tool to analyze the regularized solutions is the singular value decomposition (SVD) of the
matrix M , which is a decomposition of the form

M =

N
∑

i=1

uiσiv
T
i (4)

where the left and right singular vectors ui and vi are orthonormal, and the singular values σi are
nonnegative and appears in a nondecreasing order. It is straightforward to show that, if L = I and
xc = 0, the regularized solution is given by

x(λ) =

N
∑

i=1

fi
uT
i y

σi

vi

where f1, . . . , fN are the Tikhonov filter factors fi =
σ2

i

σ2

i
+λ

.

The norm of the solution and the norm of the residual vector which characterizes the misfit are given
in terms of the SVD by

‖x(λ)‖2 =
N
∑

i=1

(fi
uT
i y

σi

)2 (5)

and ‖y −Mx(λ)‖2 =
∑N

i=1((1 − fi)u
T
i y)

2. These expressions form the base to analyze the L−curve in
[2, ?, 6] and [?]. Nevertheless, in large problems the singular value decomposition could be expensive, and
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iterative solutions for problem (3) becomes more reasonable. We shall give our analysis in the context of
these iterative solutions.

Let us denote τ = 1
2‖y − Mx‖2 and η = 1

2‖L(x − xc)‖
2. The log-log L−curve is the curve given

by (log τ, log η). It is known (see [6]) that it has concave areas at the ends near the axes and convex
L−shaped area where the curvature is maxima. We are interested in establishing inexact procedures to
search for balanced λ in the log-log L−curve. These inexact procedures use the derivatives to identify
regions where local minima are encountered. The main tool are derivatives for τ and η. In [2] Hansen
provides derivatives for η and τ in terms of their SVD expressions. In our approach we use iterative
resolution of the optimization problem (3) instead of SVD, like Gullikson and Wedin [1]. The expressions
are equivalent.Let us denote τ̂ = log τ and η̂ = log η. So dτ̂ = dτ

τ
and dη̂ = dη

η
. We also have

dη = [LTL(x− xc)]
Tdx, (6)

dτ = [MT (Mx− y)]Tdx. (7)

On the other hand, we know from [2] that

dη = −
dτ

λ
, (8)

from which we obtain
dη̂

dτ̂
=

τ

η

dη

dτ
= −

τ

λη
. (9)

The second derivatives are also necessary:

d2η̂

dτ̂2
=

d

dτ̂

(

dη̂

dτ̂

)

=
d

dτ

(

−
τ

λη

)

dτ

dτ̂
. (10)

Since x(λ) is calculated by minimizing (3) for fixed λ, with respect to x, then the derivatives for x should
be calculated in a point satisfying

MT (Mx− y) + λLTL(x− xc) = 0. (11)

Implicitely differenciating this expression and regrouping we obtain

(MTM + λLTL)dx = −LTL(x− xc)dλ.

Since the Hessian matrix is positive definite we have

dx = −(MTM + λLTL)−1LTL(x− xc)dλ

and from (7), (11) and the last expression we get

dτ

dλ
= λβ (12)

where β := β(λ) = (x(λ) − xc)
TLTL(MTM + λLTL)−1LTL(x(λ)− xc). Now, since

d

dτ

(

−
τ

λη

)

=
− dτ

dτ
λη + τ

(

η dλ
dτ

+ λdη
dτ

)

(λη)2
,

and merging (8) and (12) in (10) we obtain

d2η̂

dτ̂2
=

(

−λ2βη + τη − λβτ

λ3βη2

)

τ. (13)

We need efficient procedures to calculate (9) and (13) which requires calculating x(λ) by an iterative
optimization procedure; then we evaluate τ(x(λ)), η(x(λ)) and β(x(λ)). To evaluate β we need to solve
a linear system of equations (instead of calculating the inverse of the Hessian). Since this procedure
involves solving a possible large optimization problem, it is desirable to perform as less evaluations for
these expressions as possible.
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Inexact search on the rotated L−curve

We rotate the L−curve like Reginska [6], obtaining the curve (θ,G(θ)), where θ = τ̂− η̂ and G(θ) = τ̂+ η̂.
We use the minimization of G as a selection criterium for the regularization parameter λ, avoiding
regularization parameter values in regions of the L−curve dominated either for the quality of the fit or
by the size of the regularized solution. First and second derivatives for G are needed to develop the fast
minimization procedure.

Lemma 0.1 Given the rotated L−curve (θ,G(θ)). The first and second derivatives are

1. dG
dθ

= −τ+λη
τ+λη

and

2. d2G
dθ2 = 2ητ(ητ−λβ(τ+λη))

β(τ+λη)3 .

Proof 0.1 We know dθ = dτ̂ − dη̂ and dG(θ) = dτ̂ + dη̂. By using dτ̂ = dτ
τ
, dη̂ = dη

η
and dη = − dτ

λ
we

obtain

dG(θ)

dθ
=

−τ + λη

τ + λη
(14)

and
dθ

dτ
=

1

τ
+

1

λη
(15)

Now, to show the second statement note that

d2G

dθ2
=

d

dθ

(

dG

dθ

)

=
d

dτ

(

dG

dθ

)

dτ

dθ
(16)

so
d
dτ

(

dG
dθ

)

= d
dτ

(

−τ+λη
τ+λη

)

= d
dτ
[(−τ + λη)](τ + λη)−1

+(−τ + λη) d
dτ
[(τ + λη)−1]

=
(

−1 + dλ
dτ
η + λdη

dτ

)

(τ + λη)−1

+(−τ + λη)
(

−(τ + λη)−2
(

1 + dλ
dτ
η + λdη

dτ

))

then using dτ
dλ

= λβ and dη
dτ

= − 1
λ
we get

d

dτ

(

dG

dτ

)

=
2(τη − λβ(τ + λη))

λβ(t + λη)2
.

Merging this expression and (15) in (16) we obtain the second derivative.

As a direct consequence of this lema we have that limλ→0
d
dθ
G(λ) = −1 and limλ→∞

d
dθ
G(λ) = 1.

To calculate these derivatives we need to obtain x(λ) as the result of an optimization procedure, and
then evaluate τ , η and β.

In the sequel we establish an inexact procedure on the L−curve to choose the regularization parameter,
avoiding portions of the curve dominated by the size of the regularization solution or the data misfit. In
the literature there are some inexact line searches to choose approximated minimizers of a function on
an interval, when accuracy is not necessary (see for example [5]). We here shall implement the so called
Wolfe search to choose the regularization parameter, by minimizing the rotated L−curve.

Algorithm 0.1 Given γ ∈ (0, 1), λ0 satisfying dG
dθ

(λ0) < 0
For i = 1, 2, . . .

λi := 2iλ0
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if dG
dθ

(λi) > 0 stop
end
λ0 = λi−1, λ0 = λi

for k = 1, 2, . . .

λk+1 :=
λ
k
+λk

2

if d
dλ

G(λk+1) > 0,

then λk+1 = λk, λk+1 = λk+1

else λk+1 = λk+1, λk+1 = λk

end
k := k + 1
Take λ̂0 the first λk such that d2

dθ2G(λk) > 0.

if | d
dθ
G(λk)| < γ| d

dθ
G(λ̂0)|

and d2

dθ2G(λk) > 0 stop.

The objective of the first loop is to choose an interval where a minimum is guaranteed to be in.
The second loop reduce the size of the interval by a half in each iteration, and keep an interval [λk, λk]
containing a local minimum. The stopping rule ask for any λk in these possible large interval, such that
sufficient decrease of the function is guaranteed. It also ask for the second derivative to be sure λk is in
the convex part of the L−curve.

The stoping rule | d
dθ
G(λk)| < γ| d

dθ
G(λ̂0)| in the above procedure is called Wolfe condition [5]. We also

call Wolfe interval to [λ, λ] defined by the above condition, in which sufficient decreasing of the objective
function is guaranteed.

Theorem 0.1 The algorithm 0.1 terminates in a finite number of steps with a near optimal parameter
value.

Proof 0.2 Since limλ→0
d
dθ
G(λ) = −1 then there exist λ0 such that d

dθ
G(λ0) < 0. Also, since limλ→∞

d
dθ
G(λ) =

1, we have that there exist î such that d
dθ
G(λî) < 0 and d

dθ
G(λî+1) > 0 so the first loop is well defined.

Since d
dθ
G(λ0) < 0, d

dθ
G(λ0) > 0 and the continuity of this derivative we have that there exist

λ∗ ∈ [λ0, λ0] satisfying
d
dθ
G(λ∗) = 0 that is λ∗ is a stationary point for G. Furthermore, λ∗ is a local

minima because the local convexity of G. Additionally, since d2

dθ2G(λ) ≥ 0 for λ near λ∗ there exists an

interval [λ, λ] satisfying λ∗ ∈ [λ, λ] ⊂ [λ0, λ0],
d
dθ
G(λ) < 0, d

dθ
G(λ) > 0 and d2

dθ2G(λ) ≥ 0 ∀λ ∈ [λ, λ].

By the construction of sequences {λk}, {λk} and {λk} we keep an interval [λk, λk] with λ∗ in it, and

such that 0 ≤ λ∗ − λk → 0 and 0 ≤ λk − λ∗ → 0. So, eventually we get k̂ such that [λ
k̂
, λ

k̂
] ⊂ [λ, λ].

In this interval , the second derivative condition holds. It remains to prove that there exist k∗ such
that λk∗ ∈ [λk∗ , λk∗ ] ⊂ [λ

k̂
, λ

k̂
] and Wolfe condition holds, which is immediate because λk → λ∗ and

d
dθ
G(λ∗) = 0.

Numerical experiments

We present numerical experiments run in some test problems. The first problem Shaw, by Hansen in
[2] is a model of an image reconstruction problem. In figure 1a we show curves of this reconstruction
obtained with extreme parameter values (in the horizontal and vertical parts of the L−curve), and the
original curve. The doted curve represents the original data; the low continuous curve corresponds to a
large parameter value, and the scrambled curve is associated to a very small parameter value. Figure
1b exibit curves calculated with parameters in Wolfe interval [10−3, 10−2], obtained in 1 iteration. Note
that the main characteristics of such curves are kept. In figure 1c the doted curve is associated to exact
(bisection, 9 iterations) and the continuous one corresponds to Wolfe search.
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The second test problem, an exponential sum parameter estimation problem of the form

y(tj) =

N
∑

i=1

ai exp(−bitj) + ǫj , , j = 1 . . . , n (17)
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Figure 1: a) Extreme parameter values in Shaw. b) Curves in Wolfe parameter interval for Shaw. c)
Curves with parameters from bisection and Wolfe searches.
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Figure 2: a) Curves in Wolfe parameter interval for Expsum1. b) Curves with parameter from bisection
and Wolfe for Expsum1.
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Figure 3: a) Curves in Wolfe parameter interval for Expsum2. b) Curves with parameter from bisection
and Wolfe for Expsum2.

is known to be ill-posed (see [3]). In figures 2a and 3a we show Wolfe interval curves for two different
data sets, in which 4 and 3 inexact search iterations were needed; while figures 2b and 3b exibit curves
associated to bisection (20 and 21 iterations respectively) and Wolfe parameter values.

Concluding remarks

Iterative search procedures to solve minimization in one dimension keep a search interval in each step,
and either reduce it to a fixed tolerance in ”exact“ procedures like bisection, or take the approximate
minimizer in a larger search interval, like Wolfe interval.

We propose using a fast inexact search on the L−curve to choose a balanced λ parameter. In our
experiments we observe that the difference between an exact search and the inexact counterpart is too
small, and so it does not worth to perform a more expensive algorithm.

Figure 1a shows images of the Shaw problem reconstructed from parameter values in the critical areas
of the L−curve. Note that it is necessary to choose a parameter value far from the “horizontal” and
“vertical” portions of the L−curve. In figures 1b, 2a and 3a we show reconstructions obtained form
parameters in Wolfe interval. We note that the “band” described by curves in this interval is thin, and
not too much differences in the main properties of the resulting reconstructed images is observed. In
figures 1c, 2b y3b we show images obtained by bisection and Wolfe procedures. Note that the difference
is too small compared with the numerical effort required to perform each of the searches.

In our framework do not use the singular value decomposition as a tool to calculate the reconstruction,
instead we use optimization procedures. This is appropriate to deal with large problems, or problems
that should be solved several times as part of another procedure. Therefore, some procedure which save
computational effort is adequate in this framework. In our opinion inexact searches are promising choices
when dealing with large ill-posed linear inverse problems in which accuracy is not too important.

Other choices of the minimization problem can be done. In fact, the more popular maximization of
the curvature of the L−curve, or the left corner of the U−curve (see [?]) are natural extensions. The main
difficulty in applying the maxima curvature criterion is the efficient representation of the derivatives.
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