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ABSTRACT: 

We show the constraints that must satisfy the N = 1 V = 4 SUGRA and the Einstein-scalar field system in order to obtain a 
correspondence between the equations of motion of both theories. As a consequence, we present two asymmetric BPS domain walls in 
SUGRA theory a.ssociated to holomorphic fake superpotentials with features that have not been reported. 

PACS numbers: 04.20.-q, 11.27.+d, 04.50.+h 

RESUMEN: 

Mostramos las restricciones que debe satisfacer SUGRA N = 1 V = 4 y el sistema acoplado Einstein-campo esca.lar para obtener 
una correspondencia entre las ecuaciones de movimiento de ambas teorias. Como consecuencia, presentamos dos paredes dominic BPS 
asimetricas asociadas a falsos superpotenciales holomorfos con intersantes cualidades. 

I. INTRODUCTION 

It is well known in the brane world [1) context that the domain wa.lls play an important role bece.UIIe they allow the confinement of 
the zero mode of the spectra of gravitons and other matter fields (2], which is phenomenologically very attractive. The domain walls 
are solutions to the coupled Einstein-BCa.lar field equations (3-7), where the scalar field smoothly interpolates between the minima of the 
potential with spontaneously broken of discrete symmetry. Recently, it has been reported several domain wall solutions, employing a first 
order formulation of the equations of motion of coupled Einstein-scalar field system in terms of an auxiliary function or fake superpotential 
(8-10], which resembles to the true superpotentials that appear in the supersymmetry global theories (SUSY). 

Supersymmetry is one of the most promising theoretical concepts in order to build unified models. Thus, it is interesting to find 
Bogomol'nyi-Prasad-Sommerfield (BPS) configurations [11, 12) such as domain-wall type solutions in this context. InN= 1 SUSY theory, 
exact solutions for a single wall are available (13-15) as well as double wall with two chiral fields in [16). InN= 2 SUSY models, exact 
solutions of single walls and multi walls have been constructed in (17-19). The domain walls in local supersymmetry theories or supergravity 
(SUGRA) have been very difficult to obtain, due to the highly non-linear nature of these theories. However, many attempts performed 
reveal useful qualitative features of domain walls in SUGRA theory (20-23). As a result of these attempts, exact domain wall solutions in 
SUGRA have been found with a smooth limit of weak gravity inN= 1 for four dimensions (24) and N = 2 in five dimenaions (25) . 

The extension of SUSY domain wa.lls to SUGRA is not straightforward, because the SUSY vacua change when the theory is coupled to 
the gravity multiple. This is one of the reasons that prevent us from obtaining the domain wall solutions in SUGRA theory. 

In ref. [26) it has been developed a method to embed SUSY theories with domain wall solutions into SUGRA, by introducing a gravita
tionally deformed superpotential which, after the extension, leaves invariant the SUSY vacua. In spite of the gravitational deformation, the 
SUGRA theory continues being invariant under SUGRA Kahler transformations as a consequence of the SUSY Kahler transformations. 
In this paper we will use this gravitational deformation in order to show, under some constraints, there is a correspondence between the 
BPS equations of the N = 1 V = 4 SUGRA theory and the first order formulation of the equation of motion of coupled Einstein-scalar 
field system [8-10). This correspondence suggests that if one wants to find domain wall solutions in SUGRA, then it is only necessary to 
solve the first order formulation of coupled Einstein-scalar field equations and verify that the fake superpotential admit an holomorphic 
representation. 

The paper is organized of the following way. In section II we will find the constraints under which the correspondence between N = 1 
V = 4 SUGRA and the coupled Einstein-scalar field system is completed. In section III and IV, we will report two static planar domain 
wall spacetime& without refiection symmetry in SUGRA theory, which will be found by applying the holomorphic fake superpotentials to 
the coupled Einstein-scalar field system. Finally, in section V, we will summarize our results. 

II. DOMAIN WALLS IN V = 4 N = 1 SUPERGRAVITY • 

Recently in [26) was proposed a gravitational deformation on the superpotential of the N = 1 SUSY theory in order to obtain domain 
wall solutions in the corresponding SUGRA theory. In this section we will consider the gravitational deformation to show that under the 
most general static metric with planar symmetry and some constraints, the BPS equations are equivalent to the equations of motion of 
the coupled Einstein-scalar field system. 

Consider the bosonic part of the Lagrangian in V = 4 where n chiral multiplets (1/>'.x;.) are coupled with the gravity multiplet 
(em.!!.,,Pm0) given by [26, 27) 
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(1) 

where 

(2) 

(3) 
In the Lagrangian, K,j• :: 8,1.K with K being the Kii.hler potential K:: K(t/>, tj>•). Wtc is an holomorphic function called superpotential, 
K. is the gravitational coupling constant, 9mn is the metric of the spacetime and e is the determinant of the vierbein em.!!.. The local Lorentz 
vector indices are denoted by underlined letters such as � and the vector indices transforming under general coordinate transformations 
are denoted by Latin letters such as m, n = 0, 1, 2, 3. The left (right) handed spinor indices are denoted by undotted (dotted) Greek letters 
such as o (a). 

We are interested in bosonic solutions since these are the ones that correspond to classical solutions. A bosonic solution will be 
supersymmetric if the supersymmetry transformations vanish for some infinitesimal supersymmetric parameter ((II)· In the absence of 
fermion fields, the bosonic fields always are invariants, and it is necessary only that the supersymmetry transformations of the fermion 
fields vanish, thus 

2 
6(1/Jm = 2K.-1Dm(+iK.e"rKWtc<Tm(=O, (4) 

(5) 

where 
m2 

Dm( =Om(+ (wm + 2 L !."l' [o,Komt/>'] (, (6) 
t 

and Wm$!2 is the spin connection. 
The BPS equations can be derived from the half supersymmetric condition where we have redefined the conserved supersymmetry 

parameter which only depends on one extra coordinate x3 = 11 

(7) 

Next, let us consider that t/>' = t/>'(y) and the following metric ansatz 

9mn- e2A(ll)(-dtmdtn + dx�dx�) + e2H(ll)dymdS/n· (8) 

Thus, from m = 0, 1, 2 in the supersymmetry transformation (4) we obtain the first order equation for the warp factor (prime indicate 
differentiation with respect to 11) 

2 
e-H A' = _,K.2e-•8e"rKWtc· (9) 

On the other hand, from equation (5) we obtain first order equation for the matter fields 

2 
e-H (t/>')'- -te'8e.l\fK x•j• n,.w,:. (10) 

Rewriting the half supersymmetric condition as (a= e!(B+i) leal, and substituting it into equation (4) form= 3, we find 

A' 
IC�I = 2""'1' 

Equations (9), (10) and (11) are collectively called BPS equations. 

(11) 

Now, we want to rewrite the BPS equations in a way that resembles the first order formulation of coupled Einstein-scalar field system 
(8-10]. For this, let us consider the gravitational deformation of the superpotential proposed in (26) 

2 -
Wtc(t/>) = e-.1\fK(•) W9t(t/>), (12) 

where K(t/>) = K(tj>,tj>•-+ t/>) and W9t = W9t +a, with W9t being the superpotential in SUSY theory (non-linear sigma model) and a an 
arbitrary constant. 

Observe that the gravitational deformation (12) obliges us to distinguish between the superpotentials of the local (Wtc) and global 
(W9t) supersymmetric theory, unlike to the usual approach where both superpotentials are the same (21, 28). However, the SUGRA theory 
described by the Lagrangian (1) under (12) continue:; being invariant under SUGRA Kahler transformations, maintain a smooth limit of 
vanishing gravitational coupling, and moreover, preserves the SUSY vacua, because the critical points of W9t are the same critical points 
of Wtc• as was demonstrated in (26). 

Substituting the deformation (12) into equation (10) we obtain 

e-H(tl>')' = -te'8e4 <K-k·>x•J• [K.2 Wgto,. ( K- �k·) +oj• w;,]. (13) 
Now, if we choose real scalar fields and we demand the following constraint be satisfied 

we find that equation (10) changes to 

a,. (x- �k·) J = o, 2 •eR 
(14) 

(15) 
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and hence the warp factor equation (9) and the scalar potential take the form 

; 
(16) 

(17) 
where we have taken (} = tr/2 as a solution to (11). Expression (11) determines the Killing spinors which have two real Grass�ann 
parameters £1,£2 corresponding to the two conserved supersymmetric directions on the BPS solutions 

(18) 

The constraint (14) strongly conditions the Kahler potential that may admit the theory to simplify the BPS equations. In fact, a Kahler 
potential which satisfies this constraint and reduces (15) and (16) to the equations of motion of the coupled Einstein-scalar field system, 
is the minimal Kahler potential K = .p•.p••. Another interesting is.;ue to worth mentioning is that (15) and (16) suggest that if one wants 
to obtain domain wall solutions associated to a Kahler potential different to the minimal, it is necessary to find a suitable combination of 
the K and W9,. 

Therefore, if we consider that SUGRA theory is compatible with: 
1. the minimal Kahler potential and only one chiral multiplet, 
2. the gravitational deformation (12) and the constraint (14), 

then we obtain the first order motion equations of the coupled Einstein-scalar field system 

-H I d -e ¢ = d¢ W9,, (19) 

(20) 

and 

(21) 

The coupled Einstein-scalar field system is a non-supersymetric theory, so in this context W9t is a fake superpotential and is not 
subject to holomorphic restrictions [5, 8-10, 29, 30) . Remember that the SUSY theory requires that a true superpotential be holomorphic. 
Therefore, the development exposed here shows that if the fake superpotential with ¢ complex is an holomorphic function, then the 
solutions obtained to the coupling are also solutions inN= 1 V: 4 SUGRA theory with the minimal Kii.hler potential. 

Next, briefly we will revise two examples reported in [21, 24, 26) in order to illustrate the approach presented 

A. From the sine-Gordon superpotential 

Let us consider the fake superpotential W9t given by 
- ¢ W9t(tP) = .Bsin ../6 +a, 

where .B and 6 are real constants and 
6 

> 0. From (19, 20, 21) with H = 0 we obtain 

¢(11) = ../6 arctan sinh ���, A(11) = -K-2 [a 11 + 6ln cosh .B:] 
and 

(22) 

(23) 

(24) 

These solutions represent a three-parameter family of plane symmetric static domain wall spacetimes, whose reflection symmetry along 
the direction perpendicular to wall depends on the a parameter. In fact, for a = 0 it is obtained the symmetric solution, being asymptotically 
(i.e. far away from the wall) AdS with cosmological constant A = -3,82K.2 and where 

6 
plays the role of the wall's thickness. It has been 

shown that this smooth domain wall geometry (parameterized in a slightly different form) localizes gravity on the wall in [22) and has as 
the distributional 6 ..... 0 thin wall limit [5, 31) the Randall-Sundrum scenario [1) in the sense of [32). 

The superpotential (22) is an holomorphic function for ¢ complex, which is key to guarantee that (23,24) be supen;ymmetric solutions. 
Moreover (22) turns out to be the superpotential of the SUSY sine-Gordon model with the minimal Kii.hler potential [24]. 

B. From the double-well superpotential 

Now, let us consider the fake superpotential given by 

- ¢ ( 1 ¢2) W9,(¢) = .B ../6 1- 36 +a, 
where the parameters satisfiy the same conditions of the last example. Thus, from the (19, 20, 21) with H = 0 we find 

tf>(y) = ../6 tanh {3611, A(11) = -K-2 [a y + �6 ( 2 ln cosh .8611 + � tanh2 .8611)] 
(25) 

(26) 



and 
/32 ( ¢2) 2 [ 4> ( 1 ¢2 ) ] 2 

Vi(</>)=- 1-- - 3"2 /3- 1--- +a c 6 6 V6 3 6  

29 

(27) 

These solutions also represent a three-parameter family of plane symmetry static domain wall spacetimes with reflection symmetry 
dependent on the a parameter, such that for a= 0, this spacetime is asymptotically AdS with cosmological constant A= -4/3/32,.2. This 
geometry, parameterized in a different form, was proposed in (10) as a smooth realization of the scenario of (1) and has been shown to 
localize gravity on the wall in (33). • 

The expression (25) is the simplest superpotential which gives rise to two isolated supersymmetric vacua in SUSY theories and with 
which is possible to construct the most general supersymmetric renormalisable lagrangian (27, 34, 35). 

Observe that in the two examples presented in this section the W91 are the associated to SUSY theories reported in the literature, which 
immediately allow us to obtain from the correspondence previously discussed, the domain wall SUGRA, as well as the extension of the 
associated SUSY theory to SUGRA model, in agreement with (26). 

Next we will show two domain wall solutions embedded into SUGRA, associated to W91 that have not been identified in none of the 
SUSY theories with minimal Kahler potential formulated so far. 

III. ASYMMETRIC BRANE WORLD 

Consider the following fake superpotential reported in (30) 
- f3 ¢2 ( ¢2 ) 

W9t(4>)=46 1-ln6 +a, 

Now, from the (19, 20, 21) with H = 0 we find 
,_2 

A(y) =--[-a 11 + 6 exp(-2exp(-f3y/6)) -6 Ei(-2 exp(-f3y/6))), 
4 

with Ei the exponential integral given by 

Ei(u) =- dr-Joo e_.,. 

-u T 
and where a, {3, 6 are real constants with 6 and {3 positive definite 

and 

<J>(y)- V'6exp(-exp(-f3y/6)) 

Vic(¢)=- f32-ln2 ___ ,_2 {3- 1-ln- - a 1 { ¢2 ¢2 3 [ 4>2 ( ¢2 ) ] 2} 
4 62 6 4 6 6 ' 

(28) 

(29) 

(30) 

(31) 

(32) 

where the field interpolates between the two non-degenerate minima (see Fig.1) of Vic, ¢1 = 0 and </>2 = V6. This represents a three
parameter family of plane symmetry static domain wall spacetime without reflection symmetry along the direction perpendicular to the 
wall. In this point it is worthwhile to stand out that this asymmetry doesn't depend on the a parameter, contrary to the previous examples. 

D 

o •• '·' 
0.6 

o •• 0.> 

0.2 -o.• 

-0.!11 o.� '·' 

Figura 1: Plots of the asymmetric kink ¢(y) (left) and the energy density p(y) (right). 

That is to say, for any value of a the solution is always asymmetric. Therefore, the asymmetry is intrinsic to the domain wall. 
If f3 >a> 0, the spacetime is asymptotically AdS with cosmological constant -3a2,.2 / 16 for 11 < 0, and -3(/3- a)2,.2 / 16 for 11 > 0. In 

fact, following (5), the distributional 6 -+ 0 thin wall limit of this geometry has been obtained in (30), showing that this spacetime behave 
asymptotically (31) as an AdS spacetime with different cosmological constants at each side of t� wall. This behavior also can be observed 
in the profile of the energy density, which asymptotically tends to these values of the cosmological constant - see Fig. 1. On the other hand, 
for this interval of a, the massless zero mode of graviton is normalizable (30), which characterize the interval as a confinement region. 

If a = {3 (a = 0), then for 11 -+ +oo, the spacetime is asymptotically flat (AdS) with a warp factor increasing toward a horizontal 
asymptote (decreasing), and for 11-+ -oo the spacetime is asymptotically AdS (flat), with a warp factor exponentially decreasing (increasing 
toward horizontal asymptote). On the other hand, if 0 > a > /3, then the spacetime for 11 -+ ±oo is asymptotically AdS. For a > {3 (a < 0), 
the warp factor increasing (decreasing) for 11-+ +oo and decreasing (increasing) for y-+ -oo. In Fig. 2 and Fig. 3 it is possible to see this 
behavior for eA, W91 and Vic in each case. 

These solutions were obtained in the frame of a non-supersymmetric theory, coupled Einstein -scalar field system. However, the fake 
superpotential (28) is an holomorphic function for 4> complex, satisfying the only necessary requirement for it to be a true superpotential 
of a SUSY theory. Therefore, in accordance with SPction II and (26), the equations (29,31,32) are domain wall solutions to the SUGRA 
theory that emerges when the SUSY theory associate to the superpotential (28) is coupled with the gravity multiplet. 

Remarkably (28) resembles the superpotential present in the effective N = 1 super Yang-Mills theory known as Veneziano Yankielowicz 
theory (36, 37), where the Kahler potential is not minimal but K � (¢¢•)113 with 4> the gluino condensate. This Kahler potential satisfies 
the constraint (14) however, it nether allows to establish the correspondence nor to find the exact domain wall solutions. 
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Figura 2: Plots of the warp factor for a <  {3 {left), a= 0, {3 (center) and 0 >a> {3 (right). 
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Figura 3: Plots of the scalar potential (continuos line) and superpotential (dashed line) for a < {3 (left), a = {3 (center) and 
0 > a> {3 (right). 

IV. DOUBLE BRANE WORLD 

Let us consider the following fake superpotential 

and 

- 2•-1 W9t(</>) = {3(sin 4>/</>o)_•_ +a, </>o = y'o(2s- 1)
, 8 

1 H(y) = -- ln[1 + (f3y/6)2"]. 2s 
Then, from (19, 20, 21) we obtain 

-'Tr</>o/2 $ 4> $ 7r</>o/2 

A(y) 2.��:2y { -2a 2F1 [l, m, n, -(f3yfo)28] - i.tn[1 + (f3yfo)2"l} , 2 ys 

4>(11) </>o arctan (f3y I o). I 

(33) 

(34) 

(35) 

(36) 

(37) 

where 2F1 is the hypergeometric function with l = m = 1/(28); n = 1 +land {3, o, a and s are real constants, with 8 being an odd integer in 
order for the field (36) to be a double kink (see Fig. 4) interpolating between the minimal of the scalar potential (37), tj>(y-+ ±oo) = ±</>o7r/2. 
For these values of 8 , this is a four-parameter family of plane symmetric static double domain wall spacetime without reflection symmetry 
along the direction perpendicular to the wall. Contrary to the previous case, the asymmetry of this solution is not intrinsic but depends 
of the a parameter. In fact, for a= 0 one obtains the reflection symmetry static double domain wall reported in [6]. 
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Figura 4: Plots of the double kink t/J(y) (left) and the energy density p(y) (right) for s = 3,5 and 7. The thickness of the line 
increases with increasing s. 

If lal < {3, the spacetime is asymptotically AdS with cosmological constant -3��:2({3- a)2 for 11 < 0, and -3��:2({3 + a)2 for y > 0. This 
behavior also can be observed in the profile of the energy density, which is peaked around two values and asymptotically tends to different 
cosmological constants - seen Fig. 4. Moreover, in this interval the warp factor (35) is a bounded function which assures the confinement 
of the mode zero of graviton. 
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Figura 5: Plots of the warp factor for lal < {J (left), a= ±{J (center) and lal > {J {right). 
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Figura 6: Plots of the scalar potential (continuos line) and superpotential (dashed line) for lal < {J (left), a= ±{J (center) and 
lal > {J (right). 

If a= /3{-/J), then for ll --+ +oo the spacetime is asymptotically AdS (flat) and for 11 -+ -oo is asymptotically flat (AdS). In the 
case, where the spacetime is asymptotically AdS, the warp factor decreases exponentially. If a > {J(a < -{J), then the spacetime for 
11 --+ +oo( -oo) is asymptotically AdS and the warp factor decreases and for 11 -+ -oo( +oo) increases, as seen in Fig. 5. On the other hand, 
Fig. 6 show the graphics of W91 and Vic are compatible with the.;e intervals. 

The W91 can be considered as a generalization of sine-Gordon superpotential (22). In fact this generalized superpotential, as in the 
particular sine-Gordon case, is holomorphic for 4; complex and therefore is a legitimate superpotential, in spite of not having been 
considered in some SUSY theories yet. Hence, the equations (35,36,37) are solutions to the SUGRA theory that emerges when the SUSY 
theory associated to superpotential {33) is coupled to gravity. 

V. SUMMARY AND OUTLOOK 

We have found the conditions that the SUGRA theory must satisfy under the gravitational deformation proposed in (26), so that the 
equations that give solution to the non-supersymmetric coupled Einstein-scalar field system in terms of a fake superpotential (8-10) be 
understood as the BPS equations of the SUGRA theory in que.;tion. The fundamental conditions are i) that the Kiihlf'r potE>ntiR.I satisfy 
the constraint {14) and ii) that the fake superpotentaal for 4; complex is an holomorphic function. The latter assures a smooth limit of 
vanishing gravitational coupling. In principle, a Kahler potential which allows us to find the desired equivalence is the minimal. In the 
context of domain wall solutions in SUGRA , to choose a Kahler potential different from the minimal, implies to think about an appropriate 
combination of Kahler potential and fake superpotential. 

In order to generate new static domain wall solutions to SUGRA theory, we proposed two holomorphic functions as the fake superp<r 
tentials associated to the equations of the coupled Einstein-scalar field system. These solutions are related to AdS static spacetime without 
reflection symmetry along the direction perpendicular to the wall. The first solution is compatible with a kink-like scalar field and the 
second to a double kink. In the first case, the asymmetry is intrinsic to the domain wall spacetime, because the kink interpolates between 
two non-degenerate minima of Z2 symmetric potential. On the contrary, in the second case, where the asymmetry is a product of the 
additional a parameter that was introduced with the purpose of observing gravitational deformations in the model. In fact, when a = 0 it 
can be recovered the solution with reflection symmetry. 

Since the presented fake superpotentials admit an holomorphic representation, we can say tQ,a.t they are legitimate superpotentials of 
a SUSY theory, and thus the obtained static asymmetric domain wall geometries turn out to be BPS solutions to the SUGRA theory 
corresponding to each superpotential with a minimal kinetic term. 
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