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◦

2 (2008), 55–69

EXACT ABELIAN HIGGS VORTICES AS 6D BRANE

WORLDS
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Resumen

En este trabajo se reportan nuevas soluciones exactas a las ecuaciones del vórtice
de Nielsen Olesen, para el modelo Higgs Abeliano en espacio plano en 3 dimen-
siones y curvo en 6 dimensiones. En el caso plano 3D, escogiendo condiciones de
borde adecuadas, encontramos una equivalencia entre las ecuaciones para la cuerda
vórtice y la ecuación de Schrdinger no lineal con el potencial “sombrero mexicano”.
También se presenta una solución exacta a las ecuaciones del vórtice con un nuevo
potencial, similar al sombrero mexicano. En 6D encontramos nuevas soluciones
tipo cuerda vórtice las ecuaciones de Einstein para tres potenciales diferentes to-
dos con rompimiento espontáneo de simetŕıa. Tal como ocurre para los mundos
brana RS basados en paredes de dominio, mostramos que el modo no masivo de la
gravedad linealizada está localizado en una vecindad del vórtice solución. También
mostramos que no hay modos masivos ligados y encontramos las correcciones al
ĺımite newtoniano de la gravedad efectiva en 4 dimensiones.

PACS numbers: 04.20.-q, 11.27.+d, 04.50.+h

Abstract

In this work we report new exact solutions to Nielsen Olesen vortex equations for the
Abelian Higgs model in flat 3 dimensional and curved 6 dimensional space times.
In the 3D flat case, choosing suitable boundary conditions we found a complete
equivalence between the string vortex equations for the mexican hat potential and
non linear schrödinger equations. We also present an exact vortex solution with a
new potential similar in shape to the mexican hat. In 6D we found new string vortex
solutions to the einstein equations for 3 different symmetry breaking potentials. Just
as happens for RS domain wall brane worlds, we show that the massless mode of
linearized gravity is localized in the neighborhood of the vortex solution. We also
show that there are not massive bounded states and found the correction to the
newtonian limit of the effective gravity.

PACS numbers: 04.20.-q, 11.27.+d, 04.50.+h

1 Introduction

Recently there has been a renewed interest in the field theory on gravitational topological defects as
domain walls [1], vortices, and monopoles [2]. It had been known for many years that topological defects
could confine fundamental fields as matter chiral fermions [3] or gauge fields [4] when same coupling
mechanism is provided; but it was only after the proposal of the brane world, in which the universe is
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considered a 3-brane contained in some large extra dimensions, with finite volume [5], that field theory
on topological defects has been intensely studied.

The idea that the Universe is some kind of membrane where matter and gauge fields are excitations
of the D-branes [6] contained in it, while the gravity is transmitted in the bulk between them by closed
strings, was developed several years ago in the context of string theory [7]. The extra dimensions were
thought to be compactified on some closed manifolds, so standard model was expected to be obtained as
a very low energy limit. So far, string theory has not been able to explain fundamental problems as the
cosmological constant problem and the hierarchy problem, neither the correct selection of the vacuum
nor the compactification process, although many attempts had been made [8].

Brane worlds theories on domain walls had achieved successful development in recent years, specially
after the important results by Randall and Sundrum explaining the hierarchy problem in a model with two
branes in an AdS orbifold [9], and the confinement of spin 2 massless gravity with the classical newtonian
limit [10]. Most of the development on brane world theory as confinement of chiral fermions, localization
of gauge fields, BPS solutions, wide and thin domain walls limits etc. had been achieved on 5 dimensional
domain walls [11]. Domain walls are not free of problems, the lost of energy by radiation, the stability
under casimir energy and/or quantum fluctuation, the localization of gauge field, the supersymmetric
extension and its relation with inflation and are still unsolved problems currently under research [12].

Domain walls are, by far, the most simple topological defect. The string-vortex defects are topological
charged solutions to the equations of the Abelian-Higgs model, with non trivial first homotopy group for
the vacuum manifold, i.e. there exist strings solutions (or holes in 2 dimensions) around which any loop
will have non trivial winding number. Brane worlds had been proposed on 6 dimensional string-vortices
[13] and also on 7 dimensional monopoles [14][15] on curved space time. It is natural to expect better
phenomenological behavior with more extra not compactified dimensions, in the same way that smaller
observable size is obtained for larger number of dimensions in AADD models [5] or greater warping
volume factor arises with a greater number of warped dimensions in RS models [9][10].

Some important advances as localization of massless gravitons [16] [17], confinement of fermions [20],
decoupling of graviphotons and graviscalar [18] and confinement of electromagnetic spin 1 gauge field
[19][21] had been recently achieved for gravitational string-vortex in 6D, while the regularization of ef-
fective 4D theories from QED or minimal supergravity on 6D brane worlds is still under research [22].
Almost all the works relays on numerical[13][18][19] or asymptotical approximations [16][17][21][22], be-
cause there are not known general analytic solutions for curved 6D string-vortices and very few particular
solutions had been reported [23], moreover in flat 2+1 dimensions only for the critical coupling exact
solutions are known [24][25]. This lack of knowledge is even worst for monopoles, for which there are
known exact solutions only for few special of cases [26]. Neither for string-vortex nor for monopoles
there are known general solutions in curved space time, nevertheless RS scenarios based on asymptotical
(and numerical) solutions had been reported [14][15][13]. In order to proceed to future developments as
quantization and stability under fluctuations studies it is very desirable to obtain exact solutions. So it is
the principal purpose of this paper to show new exact solutions to string-vortices, on which a RS scenario
could be constructed.

In section II we review the abelian higgs vortex in flat 2+1 spacetime and show an exact equivalence
between Nielsen-Olesen vortex for the mexican hat potential and non linear schrödinger equation, we
also propose an exact string-vortex solution for a new symmetry breaking potential with a proper choose
of the boundary conditions. In section III we obtain the exact solution of the einstein equations in 6
dimensions for 3 new symmetry breaking potentials, two of which are non polynomial, with the same
kind of boundary conditions that in the former section. In section IV we give two different proofs of
the localization of the zero massless mode for linearized gravity fluctuations and also prove that massive
modes are not bounded to the vortex. In section V we obtain the massive exact solutions for linearized
gravity fluctuations, and evaluate the newtonian limit for gravity. In the VI section we discuss same
remarks and conclusions, in the appendix we give a proof that the new boundary conditions are allowed
for vortex solutions.
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2 An exact vortex for abelian higgs model.

First we will present an exact cylindrical solution to the Abelian Higgs model for a potential with
spontaneous symmetry breaking, V = V (‖φ‖), that depends on the module of the scalar field in a general
form. The Lagragean density for the Abelian Higgs model in 2+1 dimensions is

LAH =
1

2
(Diφ)∗(Diφ) − 1

4
FijF

ij − V, (1)

describing a scalar field φ, of charge e in interaction with a Maxwell U(1) field Ai and where i, j = 0, 1, 2
and Dj = ∂j − ieAj .

We will look for a string-vortex static solutions in cylindrical coordinates (r, θ) of the form [27][28]

φ(−→r ) = f(r).einθ , α, f ∈ R, n ∈ Z

Aa(−→r ) = −εab
n

e

xb

r2
α(r), a, b = 1, 2

Ao(
−→r ) = 0. (2)

With the replacement of (2) into Euler Lagrange equations for (1) we get the Nielsen-Olesen vortex
equations:

d2f

dr2
+

1

r

df

dr
− n2f

r2
(α− 1) − dV

df
= 0, (3)

d2α

dr2
− 1

r

dα

dr
− e2f2(α − 1) = 0. (4)

String-vortex solutions were obtained with the boundary conditions:

f(r → 0) = 0, f(r → ∞) = 1,
α(r → 0) = 0, α(r → ∞) = 1,

(5)

by numerics and asymptotical methods. Exact solutions to the equations (3,4) are not known except for
the mexican hat potential in the Bogomol’nyi case, in which case, a critical relation between the coupling
constant and the electric charge is required [24].

We will relax the boundary conditions taking α(r → 0) finite instead of α(r → 0) = 0, so we will use:

f(r → rc) = 0, f(r → ∞) = 1,
α(r → rc) = constant, α(r → ∞) = 1,

(6)

These new boundary conditions (6) are allowed although α(r → 0) finite could lead to a singularity in
(2) in the gauge field Aa(−→r ). There is no problem with single pole singularities at the gauge connection.
The obvious example is the static electrical monopole (free point charge) its conecction Ao(r) = e

r
is singular at the charge r = 0. The same happens with the Dirac´s Monopole, that indeed have a
singularity when r → 0. This could be easily seen in Wu and Yang potential for the monopole with two

local charts: A+,− = ± g(1∓cos θ)
r sin θ ûφ for the northern H+ and southern H− hemispheres [38]:

Boundary conditions (6) together with equation (4) suggest the following ansatz that will be proved
in the appendix:

α(r) ≡ 1, for all r (7)

gauge invariant conditions as the magnetic flux, in this case, is easily obtained from (2) and (7) for any
closed curve C containing the origin

2πn

e
=

∫

C

A · dl,

so we have a Π1 = Z vortex solution. Equation (4) is automatically satisfied, and equation (3) takes the
form:
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∇2f = ω(f), where ω(f) =
dV

df
. (8)

For the mexican hat potential

Vm =
λm

4
(f2 − η2)2, where η = cte, (9)

equation (8) takes the form of a non linear schrödinger

−∇2f + λm ‖φ‖2 f = λmη
2f. (10)

Non linear quantum mechanical potential could be thought as VNLQ = λm ‖φ‖2
, and as f(r → ∞) = 1

by (6), it is necessary that η < 1 in order to allow the existence bounded states with λmη
2 ëigenvalue

[29].
So we have found that non linear Schrödinger solutions are a complete set of solutions to Nielsen

Olesen equations (3,4) for the abelian higgs model (1) when the mexican hat potential (9) is used.
Now we will look for an exact solution to (3,4) with the following potential:

V (‖φ‖) =
λ

2
(‖φ‖ − 1)2,

V (f) =
λ

2
(|f | − 1)2, (11)

this term could be interpreted as a mass term in (1) by redefining f → f +1 in (11), but we rather prefer
to interpret it as a symmetry breaking potential similar to (8), in order to obtain exact solutions by the
simplification of the equation (3):

d2f+

dr2
+

1

r

df+

dr
= λ(f+ − 1) (12)

d2f−

dr2
+

1

r

df−

dr
= λ(f− + 1) (13)

where f+ stands for f(r) when f ≥ 0, and f− stands for f(r) when f < 0 .
Equation (12) for f ≥ 0 has simple exact solutions given by

f+ = 1 + a+J0(i
√
λr) + b+Y0(−i

√
λr), a+, b+ ∈ C (14)

where J0 and Y0 stands for the first and second kind bessel function of zero order.
As J0(i

√
λr) and Im[Y0(−i

√
λr)] are divergent when r → ∞, we choose:

a+ = i.c, b+ = c, (15)

in order to satisfy the boundary conditions (6) and using the definitions of K0 second kind bessel function
we get

f+
out = 1 − 2c

π
K0(

√
λr), (16)

which is valid for r > rc where rc is such that f(rc) = 0,for r < rc that point f becomes negative
(f(r) < 0), so equation (12) is not longer acceptable. The radius rc can be interpreted as the ”core
radius” of the string-vortex, outside which (16) must be seen as the exterior solution to vortex equation
(3).

In a similar way for f < 0 we found the solution to (13)
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f− = −1 + a−J0(i
√
λr) + b−Y0(−i

√
λr), a−, b− ∈ C

in order to give a real non divergent solution, we take

a− = −i.c, b− = −c,

for which the solution results in

f−
out = −[1 − 2c

π
K0(

√
λr)], (17)

that is the solution (16) with reverse sign, and it is also valid for r > rc. i.e. outside the string core, so
it is physically the same solution than (16) with a unphysical phase change by π.

It is remarkable that this vortex solution (16) for the potential (11), is exactly the same than asymp-
totically solution [27] known very long ago for the mexican hat potential. But in this case, the solution
(16) with boundary conditions (7) and (6) is exact. As this new string-vortex solution is the same that
the known asymptotically solution (2), it has the same integer winding number and positive definite
energy rendering a physically acceptable solution.

The interior solution (r < rc) also can be obtained by setting

a+ = −k, b+ = 0,
a− = k, b− = 0,

so:
f±

in = ±[1 − k.J0(i
√
λr)], (18)

that indeed is real and finite for r < rc.
A complete solution to (12) can be constructed for all r using (16,17) and (18) as it shown in Fig.1.

Figure 1: Plots of the functions f+
in (k=0.44, λ = 4, r < 1) and f+

out (c=4.4, λ = 4, r > 1)(left) and the
symmetry breaking potential eq. (11) (right).

3 New exact einstein abelian string-vortex solutions.

We start from the 6 dimensional action

S = −
∫
dx6

√
−G

[
1

2χ
R+ Λ

]
+

∫
dx6

√
−G

[
1

2
(DAφ)∗(DAφ) − 1

4
FABF

AB − Ṽ

]
, (19)

where the first integral is the 6D Einstein Hilbert action, with a bulk cosmological constant Λ.In what
follows we will set χ = 8π

(M6)4 = 1, where M6 is the 6D Planck mass and we will follow the notation in

[13]1.

1A, B and uppercase Latin indices run over 4+2 dim. µ, ν and Greek indices over 4 dim. middle alphabet Latin indices

run in 3 dim i, j = 0, r, θ and firsts alphabet Latin indices run over 2 dim a, b = r, θ.
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Here we will look for a geometry 3+2+1 composed by a 3-brane that contains the 3+1 physical
universe and 2 extra dimensions, where we can choose coordinates (r, θ) as in the former section and the
metric is given by:

ds2 = M2(r)gµνdx
µdxν − L2(r)dθ2 − dr2, (20)

with gµν = ηµν = (+,−,−,−). In this context r and θ are the coordinates of the extra dimension, L(r)
acts as a radial factor and M(r) as warp factor for a 4 dimensional brane when move into the extra
dimensions.

Assuming that the scalar and gauge fields in (19) depends only on the extra coordinates and using
the Nielsen Olesen ansatz (2) and setting Aµ = 0 for all brane world 4D coordinates, we get the curved
version of (3,4):

d2f

dr2
+ (4m+ l)

df

dr
− P 2f

L2
− dV

df
= 0, (21)

d2P

dr2
− (4m+ l)

dP

dr
− e2f2P = 0, (22)

where

P = n [1 − α(r)]; m =
d

dr
ln[M(r)]; l =

d

dr
ln[L(r)].

As ansatz (7) was useful to find exact solutions in the flat spacetime case, we will assume here:

P ≡ 0, (23)

so the maxwell equation (22) is automatically satisfied.
Einstein equations are obtained performing variations of the metric in the action (19) as in [13] and

[17].

l′ + 3m′ + l2 + 6m2 + 3ml = −τo, (24)

4m′ + 10m2 = −τθ, (25)

2ml+ 3m2 = −1

2
τr, (26)

where ′stands for d
dr , and τo, τθ, τr are the non vanishing components of the energy momentum tensor:

τo = T 0
0 =

(f ′)2

2
+ V (f),

τθ = T θ
θ =

(f ′)2

2
+ V (f),

τr = T r
r = − (f ′)2

2
+ V (f), (27)

here (23) was inserted into the equations and the 6D (bulk) cosmological constant was absorbed into the
redefinition of the potential V = Ṽ + Λ.

The equation for the scalar field (21) could also be obtained, as in [15][17], as a consequence of the
conservation of energy momentum tensor, by means of:

d

dr
τr = 4m(τo − τr) + l(τθ − τr), (28)

so, given a potential V (f), equation (21) is functionally dependent of the system (24,25,26,28).
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We will consider the potential V (f) also as a variable of the system of differential equations (24,25,26)
jointly with (21), That is a system of 4 equations with 4 variables (m, l, f, V ).With straightforward
combinations, the complete system could be written as:

f ′′ + (4m+ l)f ′ − d

df
V = 0, (29)

l′ + (4m+ l)l = −1

2
V, (30)

m′ + (4m+ l)m = −1

2
V, (31)

m′ +m2 −ml = −1

4
(f ′)2. (32)

Equations (30) and (31) implies
m = l, (33)

that can be obtained exactly considering solutions by separation of variables: l = q(r) m, because the
only consistent function with the system is q(r) = 1.

So the system reduces to:

f ′′ + 5m.f ′ − d

df
V = 0, (34)

m′ + 5m2 = −1

2
V, (35)

m′ = −1

4
(f ′)2. (36)

as before for a given V (f) the system (34,35,36) is not longer independent, and always one of the equations
can be obtained from the other two. But still solving the system is not easy, due to its coupled non linear
nature.

We will follow here the approach developed in [30] and [31]. Instead of try to solve for a given V (f),
we will give a probe function f(r) that accomplishes the boundary conditions (6), from (36) it is easy to
obtain m as:

m = −1

4

∫
dr(f ′)2 − kRS , (37)

where kRS is an additional Randall Sundrum constant warp factor. Then from equation (35) we could
obtain the potential V (r) as a function of r. In order to obtain the interaction potential V (f) we must
solve r(f) from probe function f(r) so:

V (f) = V (r(f)), (38)

The potential V(r) could also be obtained from equation (34), but from (35) is easier. Equation (28)
is guaranty that (34) is accomplished. Of course a solution to be physically acceptable must have a stable
potential with spontaneous breaking of symmetry, as we will show immediately.

Equations (34,35,36) are very similar to that of 5D domain walls in [30] and 4 dimensional domain
walls in [32], so we will try:

f = f0 arctan (sinh βr/δ) , f0 = 2
√
δ, (39)

using (37) we get
m = −β tanh (βr/δ) , where we set kRS = 0, (40)

That correspond to the metric ”warped” factor

M(r) = cosh−δ(βr/δ), δ > 0, β > 0. (41)
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From (35) we obtain the potential V = V (r) as:

V (r) =
2β2

δ
[(1 + 5δ) sech2(βr/δ) − 5δ], (42)

and solving r as a function of f by means of (39) we have

cos2(
f

fo
) = sech2(

βr

δ
), (43)

Finally the potential is

V (f) =
2β2

δ
[(1 + 5δ) cos2(f/fo) − 5δ]. (44)

That is an stable potential, with spontaneous symmetry breaking minima, where the scalar field
interpolates smoothly between f = ±π

√
δ in AdS spacetime with cosmological constant Λ = 10β2 as

could be seen from and Fig.2.

Figure 2: Graphic of the metric factor M and scalar field (left), the potential (center), and the energy
density (right). fo=1, δ = 1/4, β = 0.1

Here we will present another two new solutions, these are found by setting:

f = f0 tanh (a r) , or (45)

f = f0 arctan (a r) , (46)

using (37) we get m(r), and setting kRS = 0 as before, we obtain the metric ”warped” factors, respectively

M(r) = exp[
1

24
f2
0 sech2(a r)] cosh−f2

o /6(a r), and (47)

M(r) = exp[−a
2
f2
0 r arctan(a r)], (48)

From (35) we obtain the potential V = V (r) and solving r as a function of f as before we get the
potentials, respectively

V (f) =
a2

2
[(f2 − f2

o )2 − 5

9
f2(f2 − 3f2

o )], and (49)

V (f) =
a2f2

o

2
[cos4(f/fo) −

5

16
f2

o [f/f0 +
1

2
sin(f/fo)]

2 (50)

The potentials (49) and (50) with the metrics warped factors (47) and (48) that correspond to the
scalar ”kink” fields (45) and (46) are very similar in shape to the former solution (44),(41) and (39) plotted
in Fig.2. As before the potentials presents symmetry breaking minima, and the scalar field is also an
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interpolating soliton between those minima in AdS space time with cosmological constant Λ = − 5
18a

2f4
0

and Λ = − 5
128a

2π2f4
0 , respectively.

Remarkably these string-vortex solutions are exact. Until now almost all solutions found, in 6D
curved space-time, were asymptotical or numerical [13][17] with the exception of [23]. If we set f = 1 in
(34,35,36) we obtain M = exp[−βr] in concordance with [23]; but in that case the potential is constant
and do not show breaking of symmetry. In general this kind of solution are very important to establish the
possibility of confinement, quantization and stability of other fields as fermions, photons, gravitons etc.
and could make possible the construction of a brane world on that background opening the possibility to
futher developments.

4 Localized gravity on the vortex

Next, we will show that these new vortices can confine gravity. In the previous section we found an exact
solution to the einstein equations for the metric (20,33,41) for the case that the gauge field and scalar
field are given by (2,23,39) with the non trivial potential (44). We will study linearized spin 2 metric
fluctuations from the metric (41) neglecting graviscalar and graviphotons modes.

hτν(x, r, θ) = ητνe
ip·x

∑

κ,µ

φµ(r)eiκθ , (51)

where x stands for xµ the cordinates on the 4 dimensional branes and (r, θ) for the polar coordinates of
the bulk. These massive modes (51) obeys the Laplace Beltrami operator, and straightforward the radial
modes satisfy [33]

− 1

M2L

∂

∂r

[√−g ∂
∂r

(φµ)

]
= µ2φµ, (52)

where µ2 = (mo)
2−

(
M
L

)2
(κ)2 represents the mass of mode φµ with 4 dimensional momentum pνp

ν = m2
o.

The mass term takes into account the contributions from orbital angular momentum κ, as in [17].
Upon substitution of (33,41) we get the equation for massive metric fluctuations:

− φ′′µ + 5β tanh(βr/δ)φ′µ − µ2 cosh(βr/δ)φµ = 0, (53)

when µ2 = 0 the equation (53) reduces to:

φ′o cosh−5δ(βr/δ) = k1, (54)

so integrating (54), we obtain the massless mode

φo = ko + k1

∫
dr cosh5δ(βr/δ). (55)

with integrations constants ko and k1.
As cosh5δ[βr/δ] is monotonous growing, we must fix k1 = 0, in order to render φo normalizable. That

is consistent with the boundary conditions

φ′µ(0) = φ′µ(∞) = 0, (56)

that allows (52) to be self adjoint [17].
The ortonormalization condition to be satisfied by φµ is

∫ ∞

0

dr M2L φ∗µ(r)φυ(r) = δµυ, (57)

∫ ∞

0

dr cosh−3δ(βr/δ) φ∗µ.φυ = δµυ,
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Figure 3: Graphics of the potential VQM for the massless mode of the vortices with M given by (41) left
(β = 1, δ = 1); with (47) center and (48) right (fo=1, a=1).

so the equivalent wavefunction in 1dimensional quantum mechanics is

ψµ(r) = cosh−3δ/2(βr/δ) φµ(r). (58)

Finally, the massless normalized equivalent wavefunction is given by:

ψo(r) = ko cosh−3δ/2(βr/δ). (59)

This function is strongly decaying (see Fig.5), so we conclude that the massless, spin two, gravitation
mode is localized on the 3-brane and strongly concentrated around r = 0 as we expected for a RS scenario
[13][17].

There is another approach to study the localization of gravity modes around the vortex [34][35] in an
exact way, the equation (53) could be written as

− φ′′µ − 5
M ′

M
φ′µ =

µ2

M2
φµ, (60)

that could be converted with the change of variables

uµ(r) = M5/2φµ(r), (61)

into a Schrödinger eingënvalue equation with zero eingënvalue energy

(−∂2
r + VQM ) uµ = 0, (62)

where

VQM =
15

4

(
M ′

M

)2

+
5

2

(
M ′′

M

)
−

( µ

M

)2

. (63)

For the case of solution(41), the quantum potential for massive states is:

VQM = −µ2 cosh2δ(βr/δ) +
5β2

2

[
5

2
tanh2(βr/δ) − 1

δ
sech2(βr/δ)

]
. (64)

Due to the first term in the quantum potential (64) there will be not bounded states except for µ = 0,
as could be seen from Fig.3. When µ 6= 0, the potential is not bounded from below, as could be observed
from Fig.4 so the potential well is unstable and the massive states will easily tunnel outside the well.
Therefore only the massless state will be bounded.

In a similar way the equivalent quantum mechanical potential for the other two vortex solutions
(45,47) and (46,48)could easily be obtained from equation (63), we can again observe in Fig.3 that when
µ = 0, there exist a potential well that allows the existence of a confined massless gravity ground state,
but when µ 6= 0, the potential has a negative exponential growing, as could be seen in Fig.4, so is not
bounded from below and massive bounded states are forbidden.
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Figure 4: Graphics of the potential VQM for the massive modes µ = 1 of the vortices with M given by
(41) left (β = 1, δ = 1); with (47) center and (48) right (fo=1, a=1).

5 Massive gravity modes and newtonian limit of gravity.

In order to compute the newtonian limit of gravity we need exact solutions to massive modes equation
(53). This equation can be solved for particular values of δ in term of Heun confluent HC functions [36]:

For δ = 1 we get for φµ(r):

C1 HC [0,−1

2
,−3,− µ2

4β2 ,
4β2+µ2

4β2 ,− sinh2(βr)] +C2 sinh(βr) HC [0,
1

2
,−3,− µ2

4β2 ,
4β2+µ2

4β2 ,− sinh2(βr)],

(65)
while for δ = 2 we get for φµ(r):

C1 e
−iµ

β
sinh2( βr

2
) HC [

2iµ

β
,−1

2
,−11

2
,−µ

2

β2
,
13β2+8µ2

8β2 ,− sinh2 (
βr

2
)] + (66)

C2 sinh(
βr

2
) e

−iµ
β

sinh2( βr
2

) HC [
2iµ

β
,
1

2
,−11

2
,−µ

2

β2
,
13β2 + 8µ2

8β2
,− sinh2(

βr

2
)].

A plot of the massive wavefunction (58) is given when δ = 1, µ = 1 and β = 1 using (65) is given in
Fig. (5), where its oscillating growing nature could be observed.

Although a general solution is not known, what is really important is the asymptotic behavior of the
massive modes. Far from the vortex core, i.e. r >> rc see (16), or equivalently for δ → 0, that correspond
to the thin domain wall analogue, we can approximate (41) by

M = cosh−δ(βr/δ) ∼= (
1

2
)δ.e−βr, (67)

for the other two vortices (45,47) and (46,48), we were not able to found exact solutions to equation (52),
but we can obtain the same asymptotic limit (67), with δ = f2

o /6 and β = a f2
o /6 for the second exact

solution (47) and δ = 0 and β = aπ f2
o/4 for the third exact solution (48). So the massive wavefunction

(53) could be approximate for all these three vortex solutions by

ψµ(r) ∼= e−
3

2
βr φµ(r), (68)

and the localized zero mode by

ψo(r) ∼=
√

3βe−
3

2
βr , (69)

The massless zero mode is then localized in the vicinity of r=0, that is near 3 brane where the known
universe is located, and decaying exponentially when when r is increased. The Fig.5 show the behavior
of the massive and massless wave functions.
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Figure 5: Plots of the massless wavefunction (left) µ = 0, β = 1 Eq.(59) and massive (right) wavefunctions
µ = 1, β = 1 Eq.(65,58)

Using the approximation (67) and (68) into the differential equation (53), and taking the limit βr/δ →
∞ for which tanh(βr/δ) → 1, we obtain

−φ′′µ + 5β.φ′µ − µ2e2βrφµ = 0,

which solution is given in term of bessel functions J5/2(
µ
β e

βr) and Y5/2(
µ
β e

βr). In exact concordance with

the result in [17].
The newtonian limit was obtained in [17], using a radial cutoff approach calculation as:

V ∼= 1

m2
pl

m1.m2

R

[
1 +

4

3πβ3

1

R3
+ ...

]
, (70)

where m2
pl = 2π

3β (M6)
4 is the 4 dimensional Planck mass, and R is the distance between two particles of

masses m1 and m2 on the 3-brane. Therefore the 1
R3 correction to the newtonian gravity is stronger than

1
R2 correction in 5 dimensional RS domain walls [10] due to the additional dimension.

6 Summary and outlook

In this work we present a proof of the equivalence between the classical Nielsen Olesen vortices and the
non linear schrödinger solitonic solutions for the old abelian higgs model with the mexican hat potential.
We also found a new vortex solution for the abelian-higgs model in 2+1 flat spacetime, this solution was
found for a polynomial potential similar to the classical mexican hat, with similar breaking symmetry
minima degeneracy. Although the solutions were found for a set of boundary conditions (6) different
to the classical one (5), the radial function f+

out, equation (16), has exactly the same asymptotical and
near core behaviour of classical Nielsen-Olesen [27] and Bogomol’nyi [24] known solutions, as could be
observed from Fig.1. We also proposed a solution inside the core f+

in equation (18), that could be useful
for studies of superconductivity interface analogs of classical abelian-higgs vortices.

We consider another central result of this paper, is to have found exact string-vortex brane world
solutions embedded in curved 6D spacetime. These solutions, were obtained with the same kind of
boundary conditions that in the 2+1 flat case, following the procedure developed in [30] and [31] to
obtain solutions to einstein equations with a proposed scalar kink source while letting free the potential.

We found three new exact 6D vortex solutions, for three different kinks, that renders adequate warped
metric factors and potentials with degenerate minima that allows spontaneous symmetry breaking of the
theory. The first solution (39), (41) and (44) is identical to the domain wall solution in [32] where δ
could be seen as the wall thickness and β as a parameter depending on the cosmological constant. The
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second solution (45), (47) and (49) has a polynomial potential that is almost identical to the mexican
hat potential. The third solution (46), (48) and (50) combine polynomial and not polynomial terms
in the potential. All the new solutions presented here, are very similar to the domain walls, but the
new solutions incorporates axial symmetry in 6 dimension and a gauge background with integer winding
number, that is absent in 5 dimensional domain walls.

As expected for a RS brane world we have shown that the zero mode (55) of the linearized gravity
spectrum is localized on the 3-brane and that the massive modes (58,65) are not bounded at all, these
results are obtained in an exact form for the 6D vortex solutions we found. Also the newtonian limit is
obtained in concordance with [17].

Using exact solutions many interesting properties of 6D brane world could be study, if we set the
classical solutions we have found as background, we can proceed to study the quantization and stability
under fluctuations, also we can study the confinement of electromagnetic spin 1 and other gauge or
fermionic fields in an exact way. These subjects are currently under research [37].
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Appendix

Following Wu and Yang classical explanation of the monopole it can be proved that boundary conditions
(6) and equation (7) are allowed. Take a circle of radius r = rc on the plane R2 dividing it into: D−

a disk with a hole at r = 0,where the singular solution (2,7,18) indeed has a single pole, and D+ is the
outside of the disk r ≥ rc where the solution (2,7,17) holds. Now take an sphere of radius rc so that
the plane R2 divides the sphere into two hemispheres H+ for the one containing the North Pole and H−

for the one containing the South Pole, the equator will correspond to the r = rc circle on the plane.
As usual, by stereographic projection H+ can be projected into D+ with the exception of the North

Figure 6:

Pole (NP ). So D+ is topological equivalent to H+ − {NP}, that is a hemisphere with a hole. Simply
by vertical projection (orthogonal to the plane) the hemisphere H− can be projected into D−, with the
exception of the South Pole (SP ) that is projected in the hole r = 0. So D− is topological equivalent to
H− − {SP}, that is another hemisphere with a hole.

As these two hemispheres are joined by the equator r = rc this topology is equivalent to a sphere with
two holes (both north and south poles removed), that is just a cylinder with open ends. It is already
known that this topology has integer first homotopy group. That means that any closed curve in the
plane with r = 0 inside, that wraps n times around the origin it will be map into a curve that circles
around the cylinder n times, so the winding number is n and the first homotopy group is Π1 = Z for this
vortex.

The transition function is the difference between the connections A(r) defined on the intersection
D+ ∩D−, that is simply the equator. from (2) and (7) we obtain A+(rc)− A+(rc) = 0, so the connection
(2,7) is trivially is a well defined gauge function, while the scalar field is also continuous due to φ+(rc) =
φ−(rc) = 0, so it is consistent. The value of the radius rc is dependent on the boundary condition (6)
and (18) determines the value of f at the origin. Reciprocally for a given value of f(r = 0), the radius rc
could be obtained solving (18).

Although the solution (2,7,18) takes singular values at r = 0, this point was excluded, so (6) and (7)
are perfectly allowed in the Topology {D+, D−} describing an electromagnetic vortex with Π1 = Z.
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