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Abstract

On the four-dimensional sector of an AdS5 warped geometry the standard
electromagnetic interaction can be simulated by massive vector fields via
the Ghoroku - Nakamura localization mechanism. We incorporate gauge
symmetry to this theory by finding the required interaction terms between
the vector bosons and the gravitational field of the scenario. The four-
dimensional effective theory defined by a Maxwell term and a tower of
Stueckelberg fields is obtained after expanding the vector fields on a massive
eigenstates basis where the zero mode is uncoupled from the rest of the
spectrum. The corrections generated by the massive gauge fields set to the
electrostatic potential are also calculated.
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INCLUYENDO SIMETRÍA DE CALIBRE EN EL
MECANISMO DE LOCALIZACIÓN DE CAMPOS

VECTORIALES MASIVOS

Resumen

La interacción electromagnética sobre el sector cuatro-dimensional de una
geometŕıa AdS5 warped puede ser simulada por campos vectoriales masivos
a través del mecanismo de localización de Ghoroku - Nakamura. En este
trabajo incorporamos simetŕıa de calibre a esta teoŕıa hallando los términos
de interacción requeridos entre los bosones vectoriales y el campo gravitacio-
nal del escenario. Se presenta la teoŕıa efectiva cuatro-dimensional obtenida
luego de expandir los campos vectoriales en una base de autofunciones
masiva, donde el modo cero se encuentra desacoplado del resto del espectro
y en correspondencia con un término de Maxwell mientras que los estados
masivos generan una torre de campos de Stueckelberg. Las correcciones al
potencial electrostático inducidas por el espectro de campos masivo también
son determinadas.

Palabras clave: Mundos brana, localización de campos vectoriales, po-

tencial electrostático.

Introduction

In the theories with extended extra dimensions our Universe is con-
ceived as a hypersurface inside a five-dimensional Anti de Sitter (AdS5)
spacetime (Randall & Sundrum, 1999). Often, these scenarios are
generated by a scalar field in self-interaction whose energy density is
in correspondence with a transition region between two AdS5 vacua.
It is expected that bulk physical fields exhibit a standard behaviour
on the four-dimensional sector of the theory; however, in some cases,
the gravitational field prevents this from happening. In particular, in
absence of a suitable coupling term, it is not possible confining bulk
gauge fields on the boundary that connects the AdS5 spaces (Bajc &
Gabadadze, 1999).

The vector field localization is a subject that has been discussed,
in our opinion, from two different approaches: considering correc-
tions to the kinematics of the bosons (Dvali, Gabadadze, & Shifman,
2001; Guerrero, Melfo, Pantoja, & Rodriguez, 2010) or assuming
no-convetional interaction terms between the vectors and the grav-
itational field (Kehagias & Tamvakis, 2001; Ghoroku & Nakamura,
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2002; Batell & Gherghetta, 2006). Here, we are interested in the sec-
ond approach, specifically in the localization mechanism reported by
Ghoroku and Nakamura in Ghoroku and Nakamura (2002), where the
dynamics of the vector fields on an AdS5 warped geometry (Randall
& Sundrum, 1999) is determined by

ds2 = (1 + α|z|)−2 (ηµνdxµdxν + dz2
)

(1)

and

L√
−g

= −1

4
FabF

ab − 1

2

(
m2

5 −m2
4δ(z)

)
AaA

a −Q2AaJ
a. (2)

Latin and Greek indices for five- and four-dimensions respectively; z
reserved to the extra coordinate.

From (2) it can be deduced that the four-dimensional effective
propagator on the transition region is given by

GTαβ(p) = −Q
2

π2

(
ηαβ −

pαpβ
p2

)[
α(ν − 1)

p2
− i

2

H
(1)
ν−2(ip/α)

H
(1)
ν−1(ip/α)

1

p

]
(3)

where T means transverse to the four-momentum pβ and ν2 = m2
5/α

2+
1.

Notice that the mechanism relaxes the gauge symmetry and ap-
peals to the interaction between bulk massive vector fields and the
topological defect at z = 0. However, the infrared behaviour of
(3), p � α, resembles to the standard electromagnetic one (tenso-
rial structure omitted),

GT (p, 0, 0) ∼ α(ν − 1)

p2
− 1

4α(ν − 2)
+
πi2ν+1

22(ν−1)
(1 + i cotπν)

Γ(ν − 1)2α2ν−3 p
2(ν−2). (4)

On the other hand, in the ultraviolet regime, p � α, we have that

H
(1)
ν−2(ip/α)/H

(1)
ν−1(ip/α) ∼ i and as a result

GT (p, 0, 0) ∼ 1/p. (5)

The model (2) is a propose to recover standard electromagnetism
on the four-dimensional sector of (1), however the absence of gauge
symmetry weakens the result (4) because, after all, the mediator of
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interaction is a massive vector field. The Lagrangian (2) should be
obtained after fix gauge on an U(1)-invariant theory; approaches in
this direction could be varied, our proposal is to generalize the mech-
anism (2) to scenarios determined by a scalar field in self-interaction
and incorporate the gauge symmetry by means of appropriate inter-
action terms between the vector bosons and gravitational field of the
model.

Including gauge symmetry

Let us to start considering the gravitational background

Lg√
−g

=
1

2
R− 1

2
∇aφ∇aφ− V (φ) (6)

where the scalar field interpolates between the minima of the self-
interaction potential (Gremm, 2000), (DeWolfe, Freedman, Gubser,
& Karch, 2000), (Castillo-Felisola, Melfo, Pantoja, & Ramirez, 2004).
In particular, for the coordinates

ds2 = e2a(z)
(
ηµνdx

µdxν + dz2
)

(7)

we have

φ′2 = 3
[
a′2 − a′′

]
, (8)

V (φ) = −3

2

[
3a′2 + a′′

]
e−2a, (9)

where a′ = ∂za and a′′ = ∂2
za.

On the scenarios generated from (6, 7) we propose a no-conventional
dynamics for the electromagnetic field

LA√
−g

= −
1

4
FabF

ab −
(
κ−

1

2

)
ga[cgd]ba′δzc

[
−2∂aAb +

(
κ−

1

2

)
a′δzaAb

]
Ad; (10)

which is invariant under the gauge transformation

δAb = ∂bχ−
(
κ− 1

2

)
a′δzbχ. (11)
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Clearly κ is the coupling parameter; namely, for κ = 1/2 the
interaction terms disappear and the Lagrangian evidently is U(1)-
invariant. Unfortunately, in this case, it is not feasible to determi-
nate a four-dimensional effective theory in correspondence with the
standard electromagnetic interaction (Bajc & Gabadadze, 1999). For
example, in the gauge Az = 0 and under the factorization Aµ(x, z) =
aµ(x)ϕ(z) we get

− 1
4

∫
dx4dz

√
−gF abFab =

− 1
4

∫
dx4ηµαηνβfαβfµν

∫∞
−∞ dyϕ2 − 1

2

∫
dx4ηµαaαaµ

∫∞
−∞ dye2a(∂yϕ)2,

(12)

with fαβ = ∂αaβ − ∂βaα and dy = eadz, which diverges for ϕ =ctte.
It can be verified that it is not possible to find normalizable solutions
for the equation of motion of the vector fields.

For κ > 1/2, no conventional interaction terms are incorporated
to (10) and make visible the gauge symmetry by simple inspection it
is not easy; it shows obvious after transforming each of the terms of
(10):

δ

(
−1

4
FabF

ab

)
= 2

(
κ− 1

2

)
a′δzdg

a[cgd]b∂aAb∂cχ; (13)

δ
(
ga[cgd]ba′δzcAd∂aAb

)
= a′δzcg

a[cgd]b
[
∂aAb∂dχ−

(
κ− 1

2

)
a′δzbAd∂aχ

]
;

(14)

δ
(
−a′2δzaδzcga[cgd]bAdAb

)
= 2a′2δzb δ

z
cg
a[cgd]bAd∂aχ. (15)

Combining these three terms we obtain δ(LA) = 0.
Now, it is convenient to rewrite (10) as follows

LA√
−g = L̃A√

−g −
2
3V (κ, z)e2aδzb δ

z
cA

bAc−(
κ− 1

2

)
ga[cgd]b

[(
a′′ + a′2

)
δzaAd + 2a′∂aAd

]
δzcAb,

(16)

where
L̃A√
−g

= −1

4
FabF

ab +
2

3
V (κ, z)AaA

a (17)

and

V (κ, z) = −3

4

(
κ− 1

2

)[(
κ+

1

2

)
a′2 + a′′

]
e−2a. (18)

The rearrangement of terms highlights to L̃A/
√
−g as a particu-

lar portion of (16), which, in isolation, can be considered as a vector
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field theory where the gauge symmetry is not present. This sector
corresponds to a generalization of (2) to geometries defined by self-
gravitating domain walls; notice that for κ = 5/2, V (5/2, z) coincides
with the scalar potential (9). For the static AdS5 case, the geometri-
cal configurations generated from (6) are regularized representations
of Randall-Sundrum scenario II (Randall & Sundrum, 1999) and it
is expected that in the zero thickness limit (17) converges to (2); in
fact

L̃A√
−g
→ −1

4
FabF

ab−1

2

[
1

6

(
κ− 1

2

)(
κ+

3

2

)
|Λ| − 1

3

(
κ− 1

2

)
τδ(z)

]
AaA

a

(19)

where five- and four-dimensional masses of (2) are determined, re-
spectively, by the bulk cosmological constant Λ = −6α2 and the thin
wall tension τ = 6α of the warped geometry (1). Therefore, the re-
quired extension to include gauge symmetry in the model (2) is the
full Lagrangian (16).

After having established a gauge field theory on an AdS5 domain
wall geometry, the four-dimensional effective theory must be com-
pared with the standard electromagnetic interaction. To this end,
first, in (16) we will redefine the vector field as follows

Ab → e−a/2Ab, (20)

and then will appeal to a pair of regulatory walls located at ±zr in
order to expand the fields in a discrete basis; the original scenario
should be obtained after taking the limit zr → ∞ (see Callin and
Ravndal (2004) for full details about the method of the regulatory
branes). Thus, for the first four components of Ab we have

Aµ(x, z) = aµ(x)ψ0(z) +
∑
n6=0

anµ(x)ψn(z), (21)

while for the last component

Az(x, z) =
∑
n6=0

anz (x)ϕn(z), (22)

where ψn(z) and ϕn(z), respectively, satisfy

QQ+ψn = m2
nψn, Q+ψn

∣∣∣
±zr

= 0 (23)
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and

Q+Qϕn = m2
nϕn, ϕn =

Q+ψn
mn

(24)

with Q and Q+ given by

Q = ∂z + κa′, Q+ = −∂z + κa′. (25)

Additionally the following orthogonality relations will be considered∫ zr

−zr
dz ψnψp = δnp,

∫ zr

−zr
dz ϕnϕp = δnp. (26)

Notice that the eigenvalues problem (23) is defined for m2
n ≥ 0

with a first eigenstate determined by

ψ0(z) = N0 e
κa(z); (27)

in contrast with the problem (24) whose eigenstates are defined strictly
for m2

n > 0.
By replacing (21) and (22) into (16) and integrating with respect

to extra coordinate, the four-dimensional effective theory is obtained

L
(4)
A = −1

4
f2
αβ +

∑
n

[
−1

4

(
fnαβ
)2 − 1

2

(
mna

n
µ + ∂µa

n
z

)2]
, (28)

where

fαβ = ∂αaβ(x)− ∂βaα(x), (29)

fnαβ = ∂αa
n
β(x)− ∂βanα(x), (30)

and
δaµ = ∂µχ0, δanµ = ∂µχn, δanz = −mnχn. (31)

Remarkably, the effective theory is determined by a Maxwell field
and a tower of Stueckelberg fields; i.e. at high energies the massive
gauge fields intervene in the the electromagnetic interaction. If the
corrections generated by the massive vectors are not significant, the
standard electromagnetic interaction can be recovered on the four-
dimensional sector of (16). Therefore, the order of the corrections in
the electrostatic potential must be calculated.
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Next, in (16) we will introduce a source for the electromagnetic
radiation −Q2AbJ

b(x, z) and a gauge-fixing term −(λδbzAb)
2/2ζ with

ζ → 0 corresponding to the unitary gauge Az = 0. As a starting point
to determine the order of corrections we will consider the potential,
in the momentum space, associated with two static sources

UJ =
(
√

2π)3

2

∫
d3p

∫
dz
√
−g(z)

∫
dξ
√
−g(ξ)J̃a1 (~p, z)G̃ab(~p, z, ξ)J̃

b
2(−~p, ξ).

(32)

where G̃ab(~p, z, ξ) is the propagator of Ab. In particular, for current
densities strongly localized on the four-space, J̃a(~p, z) = δaµj̃

µ(~p)δ(z),
we get

Uj =
(
√

2π)3

2

∫
d3pj̃α1 (~p)G̃αβ(~p, 0, 0)j̃β2 (−~p). (33)

The (α, z) and (α, β) components of propagator are determined by

a coupled system of equations; however, G̃αz → 0 for ζ → 0 and the
equations system is uncoupled in such a way that four-dimensional
components are given by

−
[(
ηνα −

p̄ν p̄α

p̄2

)
p̄2 −

4

3
V (κ, z)e2aηνα − e−aηνα∂z (ea∂z)

]
G̃αβ =

Q2e−aδνβ

(2π)2
δ(z − ξ)

(34)

where p̄α = ηαβpβ.
Writing G̃αβ in the form

G̃αβ =

(
ηαβ −

pαpβ
p̄2

)
G1 +

pαpβ
p̄2

G2 (35)

it can be seen that G1 and G2 satisfy[
e−a∂z (ea∂z)− p̄2 +

4

3
V (κ, z)e2a

]
G1 =

Q2e−a

(2π)2
δ(z − ξ) (36)

and [
e−a∂z (ea∂z) +

4

3
V (κ, z)e2a

]
G2 =

Q2e−a

(2π)2
δ(z − ξ) (37)

respectively. Note that G2 is independent of the momentum.
Now, expanding G1 in the eigenfunctions tower of the problem

(23),

G1(p, z, ξ) = −Q
2e−[a(ξ)+a(z)]/2

(2π)2

∑
n

ψ∗n(ξ)ψn(z)

p2 +m2
n

, (38)
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and considering that the eigenvalues mn are approximately quan-
tized in units of π/zr for zr →∞, the electrostatic potential (33), in
the coordinates space, between two charged particles q1 and q2; i.e.,
jµi (~x) = qiδ(~x− ~xi)δµ0 , is given by

U (r) =
Q2|ψ0(0)|2

4(
√

2π)5
q1q2
r

(
1 +

1

π|ψ0(0)|2

∫ ∞
0

zr|ψm(0)|2 e−mrdm
)

(39)

where r = |~x2−~x1|. Thus, the zero mode is related with the standard
electrostatic potential while the massive modes determinate the order
of corrections. Similar to the gravitational case, the heavy modes
contribution is exponentially attenuated and it is expected that the
deviation is generated by the light modes, those with a mass below a
critical value, say mc. (The integral in (39) can be divided into two
integrals: the first one from zero to mc, the second one from mc to
infinity.)

To find the eigenstates spectrum of (23) for a domain wall back-
ground given by (7, 8, 9) is a difficult problem. However, for reg-
ularized versions of the RS scenario, far away from the wall, where
the effects of the thickness are negligible, the metric factor is similar
to the RS geometry, namely a(z) ∼ − ln (1 + α|z|); and the prob-
lem should be simplified. Indeed, for large z, the quantum mechanic
potential associated to (23) converges to

VQM (z) ∼ κ(κ+ 1)

z2
; (40)

and the light states density on the wall can be determined as

ψm(0) ∼ 1

zr

(m
α

)κ−1
. (41)

See Csaki, Erlich, J., and Shirman (2000), Sec. 4.1 for details. Thus,
for mcr � 1, the corrections are determined by

U (r) ∼ Q
2|ψ0(0)|2

4(
√

2π)5

q1q2

r

(
1 +

αΓ(2κ− 1)

π|ψ0(0)|2
1

(αr)2κ−1

)
. (42)
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Conclusions and comments

In order to include gauge symmetry in the localization mechanims
(17), interaction terms between the vectors and the gravitational field,
as indicated in (16), must be considered. Despite how little conven-
tional of the five-dimensional model, the four-dimensional effective
theory obtained after to expand the vectors in the eigenstate basis
(23, 24) turned out to be more conventional: a Maxwell term associ-
ated to the massless state of the spectrum and a tower of Stueckelberg
fields in correspondence with the massive states, see (28). As a re-
sult, 1/r2κ, with κ the vector coupling parameter, was determined
as the contribution of the Stueckelberg fields to the four-dimensional
electrostatic potential; which, in accordance with (42), is negligible
for large distance.

On the other hand, when the action (17) is considered in the
infinitely thin wall limit, four- and five- dimensional massive terms
for the vector fields, similar to the Ghoroku-Nakamaura mechanims
Ghoroku and Nakamura (2002), are obtained; which can be identified,
respectively, with the tension of the brane and the bulk cosmological
constant. Thus, (17) is a generalization to self-gravitating domain
walls of the theory (2).

In a next work we hope to present a covariant generalization of
(16). There exist proposals to confine gauge field by means of covari-
ant mechanims; but, the inclusion of new fields have been required to
achieve this end. For example, in Kehagias and Tamvakis (2001) the
coupling of the vector fields with the dilaton π has been considered

LA√
−g

= −1

4
e2(κ− 1

2)πFabF
ab, (43)

where π satisfy the equation of motions of the Bloch brane system

Lg√
−g

=
1

2
R− 1

2
∇aφ∇aφ−

1

2
∇aπ∇aπ − V (φ, π). (44)

In particular, in conformal coordinates (7), for Ab → e−(κ− 1
2)πAb and

π ∝ a, we know that (43) converges to (10). However, to us we would
like to build a covariant version of (16) without having to appeal to
new fields that modify the geometry set up by the domain wall.
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