Estrategias de rechazo de carga para mitigar la recuperación retardada de la tensión inducida por falla: desarrollo y tendencias

Autores/as

DOI:

https://doi.org/10.13140/RG.2.2.24721.10081

Palabras clave:

recuperación retardada de tensión inducida por falla, rechazo de carga, inestabilidad de tensión de corto plazo, motores de inducción

Resumen

La recuperación retardada de la tensión inducida por falla (FIDVR) es una importante amenaza para la estabilidad de tensión de los sistemas eléctricos de potencia con carga dominada por motores de inducción. Durante la década pasada se han propuesto estrategias de rechazo de carga para mitigar la FIDVR y evitar una inestabilidad de tensión. El presente trabajo analiza las estrategias de rechazo de carga publicadas en la literatura científica para mitigar la FIDVR. Se aplica una clasificación de publicaciones científicas basada en un método sistemático de evaluación de características, para ello se identifican las características de las estrategias de acuerdo a sus aspectos metodológicos y tecnológicos de diseño y funcionalidad; además se evalúan las características según su grado de pertenencia y con ello se clasifican las publicaciones analizadas. El resultado del análisis de las estrategias de rechazo de carga, basado en reglas empíricas y métodos analíticos, revelo que aún no son del todo eficientes para determinar la mínima cantidad de carga a desconectar, ni lo suficientemente rápidas para disminuir eficazmente el tiempo de recuperación de la tensión; y se encuentra además que los métodos de diseño basados en inteligencia artificial representan una gran oportunidad para superar estos desafíos.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Gustavo Araujo-Suárez, Universidad Nacional Experimental Politécnica Antonio José de Sucre, Venezuela

Ingeniero Electricista, Magister en Ingeniería Eléctrica. Candidato a Doctor en el programa de Doctorado en Ciencias de la Ingeniería, mención Productividad de la Universidad Nacional Experimental Politécnica Antonio José de Sucre (UNEXPO), Venezuela.

Profesor agregado, Jefe de sección de Máquinas Eléctricas, Departamento de Ingeniería Eléctrica, UNEXPO. Áreas de investigación: Estabilidad de los sistemas eléctricos de potencia. Herramientas de simulación digital.

Correo electrónico: garaujo@unexpo.edu.ve
ORCID: https://orcid.org/0000-0002-5356-6011

Carmen Luisa Vásquez Stanescu, Universidad Nacional Experimental Politécnica Antonio José de Sucre, Venezuela

Ingeniero Electricista. Magister Scientiarium en Ingeniería Eléctrica. Doctora en Ciencias Técnicas.
Profesora - Investigadora titular jubilada de la Universidad Nacional Experimental Politécnica Antonio José de Sucre (UNEXPO), Barquisimeto, Venezuela. Áreas de investigación: Gestión energética. Cambio climático.

Correo: cvasquez@unexpo.edu.ve
ORCID: https://orcid.org/0000-0002-0657-3470

Citas

P. Irminger; D. T. Rizy; H. Li; T. Smith; K. Rice; F. Li; S. Adhikari. Air conditioning stall phenomenon - testing, model development, and simulation. In PES T & D 2012, pages 1–8. Orlando, FL, USA, IEEE, 2012. https://doi.org/10.1109/TDC.2012.6281531.

H. Saber; M. R. Karimi; E. Hajipour; N. Farzin; S. M. Hashemi; A. Agheli; H. Ayoubzadeh; M. Ehsan. Investigating the effect of ambient temperature on fault-induced delayed voltage recovery events. IET Generation, Transmission & Distribution, 14(9):1781–1790, 2020. https: //doi.org/10.1049/iet-gtd.2019.1025.

N. Hatziargyriou; J. Milanovic; C. Rahmann; V. Ajjarapu; C. Canizares; I. Erlich; D. Hill; I. Hiskens; I. Kamwa; B. Pal; P. Pourbeik; J. Sanchez-Gasca; A. Stankovic; T. Van Cutsem; V. Vittal; C. Vournas. Definition and classification of power system stability – revisited & extended. IEEE Transactions on Power Systems, 36(4):3271–3281, 2021. https://ieeexplore.ieee.org/document/9286772.

S. Adhikari; J. Schoene; N. Gurung; A. Mogilevsky. Fault induced delayed voltage recovery (FIDVR): Modeling and guidelines. In 2019 IEEE Power & Energy Society General Meeting (PESGM), Atlanta, GA, USA, 2019. IEEE. https://ieeexplore.ieee.org/document/8973440.

Institute of Electrical and Electronics Engineers, IEEE. IEEEXplore Digital Library. https://ieeexplore.ieee.org/Xplore/home.jsp.

Elsevier. ScienceDirect. https://www.sciencedirect.com/.

A. R. R. Matavalam; V. Ajjarapu. PMU-based monitoring and mitigation of delayed voltage recovery using admittances. IEEE Transactions on Power Systems, 34(6):4451–4463, 2019. https://ieeexplore.ieee.org/document/8701501.

M. Paramasivam; A. Salloum; V. Ajjarapu; V. Vittal; N. Bhatt; S. Liu. Dynamic optimization based reactive power planning to mitigate slow voltage recovery and short term voltage instability. IEEE Transactions on Power Systems, 28(4):3865–3873, 2013. https://ieeexplore.ieee.org/document/6558852.

W. Wang; F. de Leon. Quantitative evaluation of DER smart inverters for the mitigation of FIDVR in distribution systems. IEEE Transactions on Power Delivery, 35(1):420–429, 2020. https://ieeexplore.ieee.org/document/8770152.

R. Verayiah; A. Mohamed; H. Shareef. Review of under-voltage load shedding schemes in power system operation. Przeglad Elektrotechniczny, 90(7):99–103, 2014. https://www.researchgate.net/publication/288094761_Review_of_under-voltage_load_shedding_schemes_in_power_system_operation.

R.B. Sharma; G.M. Dhole. Wide area measurement technology in power systems. Procedia Technology, 25:718–725, 2016. https://www.sciencedirect.com/science/article/pii/S2212017316305126.

S. M. Miraftabzadeh; F. Foiadelli; M. Longo; M. Pasetti. A survey of machine learning applications for power system analytics. In 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), Genova, Italy, 2019. IEEE. https://ieeexplore.ieee.org/document/8783340.

K. Mollah; M. Bahadornejad; N. K. C. Nair; G. Ancell. Automatic under-voltage load shedding: A systematic review. In 2012 IEEE Power and Energy Society General Meeting, pages 1–7, San Diego, CA, USA, 2012. IEEE. https://ieeexplore.ieee.org/document/6345547.

R. M. Larik; M. W. Mustafa; M. N. Aman. A critical review of the state-of-art schemes for under voltage load shedding. International Transactions on Electrical Energy Systems, 29(5):1–26, 2019. https://onlinelibrary.wiley.com/doi/pdf/10.1002/2050-7038.2828.

J. Hurtado. Metodología de la investigación. Guía para la comprensión holística de la ciencia. Quirón Ediciones, Caracas, Venezuela, 2012.

M. Barrera. Análisis en investigación. Ediciones Quirón, Caracas, Venezuela, 2009.

H. Bai; V. Ajjarapu. A novel online load shedding strategy for mitigating fault-induced delayed voltage recovery. IEEE Transactions on Power Systems, 26(1):294–304, 2011. https://ieeexplore.ieee.org/document/5454321.

Mahari; H. Seyedi. A fast online load shedding method for mitigating FIDVR based on novel stability index. In 2013 21st Iranian Conference on Electrical Engineering (ICEE), pages 1–6, Mashhad, Iran, 2013. IEEE. https://ieeexplore.ieee.org/document/6599887.

B. Otomega; T. Van Cutsem. Distributed load interruption and shedding against voltage delayed recovery or instability. In 2013 IEEE Grenoble Conference, pages 1–6, Grenoble, France, 2013. IEEE. https://ieeexplore.ieee.org/document/6652479.

S. V. Kolluri; J. R. Ramamurthy; S. M. Wong; M. Peterson; P. Yu; M. R. Chander. Relay-based undervoltage load shedding scheme for entergy's western region. In 2015 IEEE Power & Energy Society General Meeting, pages 1–5, Denver, CO, USA, 2015. IEEE. https://ieeexplore.ieee.org/document/7285651.

Y. Dong; X. Xie; K. Wang; B. Zhou; Q. Jiang. An emergency-demand-response based under speed load shedding scheme to improve short-term voltage stability. IEEE Transactions on Power Systems, 32(5):3726–3735, 2017. https://ieeexplore.ieee.org/document/7822924.

Y. Lee; H. Song. Multi-phase under voltage load shedding scheme for preventing delayed voltage recovery by induction motor power consumption characteristics. Applied Sciences, 8(7):1115, 2018. https://www.mdpi.com/2076-3417/8/7/1115.

Joseph; M. Cvetkovi´c; P. Palensky. Predictive mitigation of short term voltage instability using a faster than real-time digital replica. In 2018 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Sarajevo, Bosnia and Herzegovina, 2018. IEEE. https: //ieeexplore.ieee.org/document/8571803.

S. M. Hashemi; M. Sanaye-Pasand; M. Abedini. Under-impedance load shedding: a new preventive action against voltage instability. IET Generation, Transmission & Distribution, 13(2):201–208, 2018. https://digital-library.theiet.org/content/journals/10.1049/iet-gtd.2018.5851.

S. R. Moghadam; E. Hajipour; N. Farzin; M. Vakilian; M. Ehsan. Improvement in voltage recovery delay phenomenon caused by air conditioners specific performance. In 2019 International Power System Conference (PSC), pages 523–529, Tehran, Iran, 2019. IEEE. https://ieeexplore.ieee.org/document/9081481.

E. A. Tapia; D. G. Colome. Mitigación de la recuperación retardada de tensión inducida por falla mediante desconexión de carga basada en el comportamiento dinámico de la carga. Revista Técnica “Energía”, 16(1):23–31, 2019. https://revistaenergia.cenace.gob.ec/index.php/cenace/article/view/332.

C. X. Jiang; Z. Li; J. H. Zheng; Q. H. Wu. Power system emergency control to improve short-term voltage stability using deep reinforcement learning algorithm. In 2019 IEEE 3rd International Electrical and Energy Conference (CIEEC), pages 1872–1877, Beijing, China, 2019. IEEE. https://ieeexplore.ieee.org/document/9077322.

S. Chen; Y. Bai; Z. Jun. Dynamic load shedding strategy using distributional deep reinforcement learning in power system emergency control. In 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2), pages 248–253, Wuhan, China, 2020. IEEE. https://ieeexplore.ieee.org/document/9346749.

Q. Huang; R. Huang; W. Hao; J. Tan; R. Fan; Z. Huang. Adaptive power system emergency control using deep reinforcement learning. IEEE Transactions on Smart Grid, 11(2):1171–1182, 2020. https://ieeexplore.ieee.org/document/8787888.

Q. Li; Y. Xu; C. Ren. A hierarchical data-driven method for event-based load shedding against fault-induced delayed voltage recovery in power systems. IEEE Transactions on Industrial Informatics, 17(1):699–709, 2021. https://ieeexplore.ieee.org/document/9091249.

L. Zhu; Y. Luo. Deep feedback learning based predictive control for power system undervoltage load shedding. IEEE Transactions on Power Systems, 36(4):3349–3361, 2021. https://ieeexplore.ieee.org/document/9312447.

Publicado

2022-02-27

Cómo citar

[1]
G. Araujo-Suárez y C. L. Vásquez Stanescu, «Estrategias de rechazo de carga para mitigar la recuperación retardada de la tensión inducida por falla: desarrollo y tendencias», Publ.Cienc.Tecnol, vol. 15, n.º 2, pp. 51-60, feb. 2022.

Número

Sección

Artículo de Revisión