Antioxidant capacity of Lactobacillus spp bacteria with probiotic potential isolated from feces and duodenal content of dogs and cats

Authors

  • Rodrigo Cortez Universidad Centroccidental Lisandro Alvarado, Venezuela
  • Carmen Meléndez Universidad Centroccidental Lisandro Alvarado, Venezuela
  • Yurimaua Perazzo Universidad Centroccidental Lisandro Alvarado, Venezuela
  • Ysabel Márquez Universidad Centroccidental Lisandro Alvarado, Venezuela
  • Celeste Flores Universidad Centroccidental Lisandro Alvarado, Venezuela
  • Aura López de Ortega Universidad Centroccidental Lisandro Alvarado, Venezuela

Keywords:

Lactobacillus, antioxidants, feces, duodenal content

Abstract

The objective of this investigation was to determine whether lactic acid bacteria (BAL) isolated from faeces and duodenal content of cats and adult dogs, differ in terms of antioxidant capacity. The stool samples were taken directly from the anus, with sterile swab and duodenal contents (CD) by aspirate at the duodenum level by laparotomy under general anesthesia of the patient, the samples were placed in a glass tube containing 4.5 ml of Man Rogosa Sharpe broth (MRS) (Himedia®) to then be cultivated by depletion in plates with MRS agar (Himedia®) and isolated and identified by the API50CH identification kit. Once the strains were identified, conjugated dienes (DC) were determined by extraction with isopropanol, malondialdehyde (MDA) by the test for reactants with 2-thiobarbituric acid (TBARS), superoxide dismutase (SOD) and glutathione (GSH) by means of a kit. commercial. The bacteria isolated in both feces and CD were L. leuconostoc, L. plantarum and L. paracasei and the results obtained in the bacteria isolated from faeces were as follows: DC 0.00174 ± 0.00005 mol / mg PT, MDA 0 , 36 ± 0.037 nmol / mg PT; GSH 7.7 ± 0.6 U / g PT; SOD 22.0 ± 1.5 U / g PT while for bacteria isolated from CD was 0.00172 ± 0.00003 DC; MDA 0.40 ± 27; GSH 8.9 ± 0.4; SOD 22.1 ± 2.3; without presenting significant differences between the location of the extraction of the sample in any of the parameters. Conclusion: the isolated bacteria showed high antioxidant activity which is not affected by the anatomical location.

Downloads

Download data is not yet available.

References

[1] Metchnikoff E. 1908. The prolongation of life; optimistic stu dies. Editorial Putnams Sons. New York/Londres. páginas
[2] Castro, L. A.; De Rovetto, C.. Probióticos: Utilidad Clínica. Colombia Med 2006; 37 (4):308-314.
[3] Tournut J,. Perspective de Developpement des Probiotiques Á Base e Bactéries Lactiques: Bactéries lactiques. Fondamentaux et Technologiques 1994; 2:471-488. Francia.
[4] Wu G, Chen J, Hoffmann C, Bittinger K, Chen Y, Keilbaugh S. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011; 334:105–8.
[5] Benno Y, Nakao H, Uchida K, Mitsuoka T. 1992. Impact of the advances in age on the gastrointestinal microflora of beagle dogs. J Vet Med Sci 1992; 54(4):703-6.
[6] Yatsunenko, T; Rey F; Manary, M; Trehan, I; Dominguez-Bello, M; Contreras, M. 2012. Human gut microbiome viewed across age and geography. Nature. Nature Publishing Group, a division of Macmillan. Publishers Limited. All Rights Reserved 2012; 486: 222–7.
[7] Guarner F, Khan A. Garisch J, Eliakim R, Gangl A, Thomson A, Krabshuis J, Lemair T. 2011. Guía Práctica de la Organización Mundial de Gastroenterología: Probióticos y prebióticos. http://www.worldgastroenterology.org/UserFiles/file/guidelines/probiotics-spanish-2011.pdf
[8] Duwat, P.. Stress responses pathways in Lactococcus lactis. Recent Res devel Microbiol 1999; 3:335-348.
[9] Bengmark S. y. Gil Á. Control bioecológico y nutricional de la enfermedad: prebióticos, probióticos y simbióticos. Nutr. Hosp. 2006; 21:(2)73-86.
[10] Yeimy Alejandra Rodríguez R, Andrés Felipe Rojas G, Sneyder Rodríguez B. Encapsulación de probióticos para aplicaciones alimenticias. Revista Biosalud 2016; 15(2): 106-115
[11] Tang W, Xing Z, Li C, Wang J, Wang Y. 2017. Molecular mechanisms and in vitro antioxidant effects of Lactobacillus plantarum MA2. Food Chem. 2017 15;221:1642-1649. doi: 10.1016/j.foodchem.2016.10.124. Epub 2016 Oct 27.
[12] Wallin B, Rosengren B, Shertzer H, Camejo G. Lipoprotein oxidation and measurement of thiobarbituric acid reacting substances formation in a single microtiter plate: its use for evaluation of antioxidants. Anal Biochem 1993; 208: 10-15.
[13] Ohkawa H, Ohishi N, Yagi K.. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979; 95: 351-358.
[14] Dellaglio, F; De Roissart, H; Torriani, S; Curk, M; Janssens, C. 1994. Caractéristiques Générales des Bactéries lactiques. En: Bactéries Lactiques. Vol. I. Lorica. 25-116 pp.
[15] Gaschen, F. 2007. Bacteria and the Canine and Feline Gut: The Good, the Bad, and the Ugly. School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA. NAVC Proceedings. URL :http:// www.ivis.org. (Consulta: Diciembre de 2010).
[16]Marteau, P; Vrese, CJ; Cellier; Schrezenmeir, J.. Protection from gastrointestinal diseases with the use of probiótics.. Am J Clin Nut 2001;73: 430-436.
[17] Kim, S; Owaga, Y; Adachi Y. Canine Intestinal Lactic Acid Bacteria Agglutinated with Concanavalin., J.Vet. Med. Sci. 2006; 68 (12): 1351-1354.

[18] Perelmulter K, Fraga M, Zunino P. In vitro activity of potential probiotic Lactobacillus murinus isolated from the dog. Journal of Applied Microbiology. 2008; 104(6):1718–1725.
[19] Avila, J, Avila M, Tovar B, Perazzo Y, Brizuela M, Hernadez H. Capacidad Probiótica de Cepas Del Género Lactobacillus Extraídas Del Tracto Intestinal de Animales de Granja. Revista Científica, FCV-LUZ. 2010. XX(2) 161 –169.
[20] Fabian E, Elmadfa I. The effect of daily consumption of probiotic and conventional yoghurt on oxidant and anti-oxidant parameters in plasma of young healthy women. Int J Vitam Nutr Res. 2007; 77 (2): 79-88.
[21] Gaschen, F. 2007. Bacteria and the Canine and Feline Gut: The Good, the Bad, and the Ugly. School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA. NAVC Proceedings. URL :http:// www.ivis.org. (Consulta: Diciembre de 2010).
[22] Saide J, Gilliland S. Antioxidative Activity of lactobacilli Measured by Oxygen Radical Adsorbance Capacity.1: J Dairy Sci 2005; 88(4):1352-7.
[23] Kullisaar, T; Songisepp E; Aunapuu, M; Kilk, K; Arend, A; Mikelsaar, M; Rehema, M; Zilmer, M. 2010. Complete glutathione system in probiotic Lactobacillus fermentum ME3. Prikladnaia biokhimiia i mikrobiologiia 2010;46(5):527–531.
[24] Tang W, Xing Z, Hu H, Li C, Wang J, Wang Y. 2016. Antioxidative effects in vivo and colonization of Lactobacillus plantarum MA2 in the murine intestinal tract. Apply Microbial Biotechnology. 2016;100(16):7193-202.
[25] Yoon Yung H; Byun Jung R. 2004. Occurrence of Glutathione Sulphydryl (GSH) and Antioxidant Activities in Probiotic Lactobacillus spp. Asian-Aust. J. Anim. Sci. 2004; 17(11):1582-1585.
[26] Peran L, Sierra S, Comalada M, Lara-Villoslada F, Bailón E, Nieto A, Concha A, Olivares M, Zarzuelo A, Xaus J, Gálvez J. A comparative study of the preventative effects exerted by two probiotics, Lactobacillus reuteri and Lactobacillus fermentum, in the trinitrobenzenesulfonic acid model of rat colitis.Br J Nutr. 2007;97(1):96-103.

Published

2018-05-29

How to Cite

Cortez, R., Meléndez, C., Perazzo, Y., Márquez, Y., Flores, C., & López de Ortega, A. (2018). Antioxidant capacity of Lactobacillus spp bacteria with probiotic potential isolated from feces and duodenal content of dogs and cats. Gaceta De Ciencias Veterinarias, 22(2), 48-52. Retrieved from https://revistas.uclave.org/index.php/gcv/article/view/324

Issue

Section

Original research article