Antioxidant capacity in microorganisms causing clinical and subclinical mastitis in raza carora mestized cows and its relationship with the electronic counting of somatic cells

Authors

Keywords:

SOD, mastitis, bacterias, Carora cows

Abstract

The bacterium in mammary gland raise CS, 90% are neutrophils with a phagocytic function, releasing enzymes, inflammatory mediators and reactive O2 species. Superoxide dismutase (SOD-CuZn) counteracts these species, produced by white milk cells. The objective of  the study was to determine the SOD in bacteria that cause clinical and subclinical mastitis. Selected 20 Carora-Holstein cows with mastitis in the first 20 days postpartum: 15 with subclinical mastitis and 5 with clinical mastitis, the first determined by the California test, confirmed by electronic SC count and clinical mastitis with the black background test, before milking. Once the bacterial strains were identified, the SOD was measured in U/mL. 6 Staphylococcus strains were isolated, whose SOD was 46.27±5.08; 4 strains of Pseudomonas aeruginosa with 139.59±4.73; 3 strains of Bacillus sp with: 36.24±0.71; 2 strains of Streptococcus uberis with 39.01±0.71; 2 strains of Streptococcus dysgalactiae with 23.54±0.38; 2 strains of Corynebacterium sp with 117.92±0.71 and 1 strain of E. coli with122.43. The results indicate that Pseudomonas aeruginosa, Corynebacterium sp and E. coli have a higher activity of SOD, which wouldi ndicate that they have an efficient antioxidant system to avoid the respiratory burst of white milk cells, favoring the evolution of the inflammatory process in the mammary gland.

Downloads

Download data is not yet available.

References

Ericsson H; Lindberg A; Persson K; Ekman T; Artursson K; Nilsson OM et al. Microbial aetiology of acute clinical mastitis and agent-specific risk factors. Vet. Microbiol. 2009: 137 (1-2):90-97.

Trujillo CM, Gallego AF. Ramírez N, Palacio LG. Prevalencia de mastitis en siete hatos lecheros del oriente antioqueño. Rev. Colom. Cienc. Pec. 2011; 24 (1):11-18.

Bradley AJ, Green MJ. Adaptation of Escherichia coli to the bovine mammary gland. J Clin Microbiol. 2001; 39(5):1845-1849.

Radostits OM, Gay CC, Blood DC, Hinchcliff KW. Medicina Veterinaria. Mastitis Bovina. Edit. Mcgrawh-ill. 9o Edición. Vol 1. Madrid, España. 2002 p 728- 810.

Guinane CM, Ben Zakour N, Tormo-Mas MA, Weinert LA, Lowder BV, Cartwright RA et al. Evolutionary genomics of Staphylococcus aureus reveals insights into the origin and molecular basis of ruminant host adaptation. Genome Biol. Evolut. 2010; 2:454-466.

Soca PM, Suárez YE, Soca PM, Rivero J, Fuentes CM, Alberto PC. Comparación de la incidencia epizootiológica de la mastitis clínica en dos rebaños lecheros después del uso del agua para la antisepsia final del pezón. Rev. Electrónica Vet. 2005; VI, (3) 1-11.

Faría J, Valero K, D´Pool G, García A, Allara M, Morales D. Agentes bacterianos y contaje de células somáticas en leche de cuartos de bovinos mestizos doble propósito ordeñados en forma manual o mecánica en cuatro fincas lecheras del estado Zulia, Venezuela. Rev. Científ. FCV-LUZ. 2005; 15(1): 64-71.

Meglia GE, Mata HT. Mecanismos específicos e inespecíficos de defensa, con referencia a la glándula mamaria de los bovinos productores de leche. Facultad de Ciencias Veterinarias. La Pampa Argentina 2001. Disponible en URL: http://www.produccionanimal.com.ar/sanidad_intoxicaciones_metabolicos/infecciosas/bovinos_leche/10-Inmunidad_en_glandula_mamaria.pdf. Consultado el 20 de noviembre de 2012.

Craven N, Williams MR. Defenses of the bovine mammary gland against infection and prospects for their enhancements. Vet. Immunol. Immunopathol. 1985; 10: 71-127.

Babior BM. The respiratory burst of phagocytes. J Clin. Invest. 1984; 73:599-601.

Broxton CN, Culotta VC. SOD enzymes and microbial pathogens: Surviving the oxidative storm of infection. PloS. Pathog. 2016; 12(1):e1005295. doi:10.1371/journal.ppat.1005295.

Sheng Y, Abreu IA, Cabelli DE, Maroney MJ, Miller AF, Teixeira M. Superoxide dismutases and superoxide reductases. Chem. Rev. 2014; 114(7):3854-3918.

Troxell B, Xu H, Yang XF. Borrelia burgdorferi, a pathogen that lacks iron, encodes manganese-dependent superoxide dismutase essential for resistance to streptonigrin. J. Biol. Chem. 2012; 287(23):19284-19293.

Ewel JJ, Arnold M. Tosi JP. Zonas de Vida de Venezuela. En: Memoria Explicativa sobre el Mapa Ecológico. Ministerio de Agricultura y Cría. Fondo Nacional de Investigaciones Agropecuarias. República de Venezuela (Ed), Editorial Sucre, Caracas, Venezuela. Capítulo 9: Bosque seco premontano. 1976; 125-137. 2da Ed.

Consejo Nacional de Mastitis. Conceptos actuales de mastitis. Fount. Fouth Edition. 1996; Cap. 1, 3, 8, 11: 1.

Harmon RJ, Eberhart RJ, Jasper DE, Langlois BE, Wilson RA. Microbiological procedures for the diagnosis of bovine udder infection. Natl. Mastitis Counc., Inc., Arlington, VA. 1990.

André MJ, Andrighetto C, Brazón MR, Correa RC, Galhardo DG, Piccinin A. et al. Correlação entre o California Mastitis Test (CMT) e a contagem de células somáticas (CCS) do leite de búfalas Murrah. Rev. Brasil. Zootec. 2005; 34(6):2039-2045.

Echeverri JJ, Jaramillo MG, Restrepo LF. Evaluación comparativa de dos metodologías de diagnóstico de mastitis en un hato lechero del Departamento de Antioquia. Rev. Lasallista Investigac. 2010; 7(1):49-57.

Benov LT, Beyer WF, Stevens RD, Fridovich I. Purification and characterization of the Cu,Zn SOD from Escherichia coli. Free Radic. Biol. Med. 1996; 21:117-121.

D'Orazio M, Scotti R, Nicolini L, Cervoni L, Rotilio G, Battistoni A et al. Regulatory and structural properties differentiating the chromosomal and the bacteriophage-associated Escherichia coli O157:H7 Cu, Zn superoxide dismutases. BMC Microbiol. 2008; 8:166 https://doi.org/10.1186/1471-2180-8-166.

Battistoni A. Role of prokaryotic Cu, Zn superoxide dismutase in pathogenesis. Bioch.Soc.Trans. 2003; 31(6):1326-1329.

Trost E, Götker S, Schneider J, Schneiker-Bekel S, Szczepanowski R, The complete genome sequence of Corynebacterium. BMC 2010; Genomics volume 11, Article number: 728.

Gu BB, Zhu YM, Zhu W, Miao JF, Deng YE, Zou SX Retinoid protects rats against neutrophil-induced oxidative stress in acute experimental mastitis. Intern. Immunopharmacol. 2009; 9:223-229.

Abd Ellah, Abd Ellah MR. Role of free radicals and antioxidants in mastitis. J Adv.Vet. Res. 2013; 3:1-7.

Ibrahim HMM, El-seedy YY, Gomaa NA. Cytokine response and oxidative stress status in dairy cows with acute clinical mastitis. J Dairy Vet. Anim. Res. 2016; 3(1):9-13. DOI: 10.15406/jdvar.2016.03.00064.

Aranguren-Parra AJ, Flores CA, Meléndez CE, Márquez YC, López-Ortega AA. Estrés oxidativo y actividad antioxidante en leche de vacas con mastitis subclínica. Rev. vet. 2017; 28(2):103-107.

Schuster DE, Lee EK, Kehrli ME. Bacterial growth, inflammatory cytokine production, and neutrophil recruitment during coliform mastitis in cows within ten days after calving, compared with cows at midlactation. Am. J Vet. Res. 1996; 57:1569-1575.

Published

2023-07-08

How to Cite

Aranguren, A., Paredes, M., Torres, A., Gonzalez, Z., & Marquez, Y. (2023). Antioxidant capacity in microorganisms causing clinical and subclinical mastitis in raza carora mestized cows and its relationship with the electronic counting of somatic cells. Gaceta De Ciencias Veterinarias, 26(1). Retrieved from https://revistas.uclave.org/index.php/gcv/article/view/4475

Issue

Section

Original research article