Circular self-supporting roofs applying finite elements method

Authors

DOI:

https://doi.org/10.51372/gacetatecnica231.6

Keywords:

Ansys, circular self-supported roof, vertical deformations, yield stress, MEF, Stress Von Mises

Abstract

Industrial buildings are structures for various uses in the trade or development of a certain population, consequently, these types of structures are in high demand in the field of civil engineering, especially in the area of design and construction; For this reason, this research presents an analysis of self-supporting circular-type roofs, applying the finite element method under the help of the ANSYS Workbench 19.0 simulation software using first-order area-type finite elements. The vertical deformations obtained by original cross sections were compared to with the deformations of an equivalent cross section in inertia and weight. Industrial buildings with lights of 10, 20, 30, and 40 m were analyzed. A self-supporting roof section type CS 1000-610, material ASTM 653 of SS40 base metal and galvanized coating by galvanizing Z275 (G90) was considered. The support structure is made up of metal structure truss-type beams and columns in accordance with the LRFD methodology and the NEC 2015, AISI S100-07, AISC341-05 standards. Additionally, support plates suitable for this type of roof were analyzed. Stress concentrations were observed in the region of the support plate, deformations by original sections greater than the deformations by equivalent sections, and variations in cover weight and live load, the latter having a variation between 14,75% to 29,14%.

Downloads

Download data is not yet available.

Author Biographies

Cristhian Daniel Páez Redrován, Universidad Politécnica Salesiana

Cristhian Daniel, Páez Redrován, Department of Civil Engineering, Salesian Polytechnic University, Quito, Ecuador, 13danielpaez13@gmail.com

David Patricio Guerrero Cuasapaz, Universidad Politécnica Salesiana

David Patricio, Guerrero Cuasapaz, Civil Engineer, Master in Structures, Research Professor at the Salesian Polytechnic University, Ecuador, E-mail: dguerrero@ups.edu.ec

References

Proingcol, “Cubiertas autoportantes Colombia Roofing”, Colombia, 2018

Sanxing Group, “Machine manufacturer & steel building constructor”, China, 1992

Incoperfil, “Cubiertas curvadas autoportantes”, España, 2011

Unitelha, “Ficha técnica perfiles tipo UNTA, Unitelha”, España, 1991

Apimet, “Apimet cubiertas autoportantes”, España, 1993

Poliarkit, “Ficha técnica cubierta autoportante sin estructura”, Colombia, 2012

M. Guerra, “Comentario desconocimiento del uso de paquetes computacionales, Disponible en:

https://www.facebook.com/photo.php?fbid=10215489587937857&set=pb.1383414939.-2207520000..&type=3, 2019

M. Vásquez y E. López, “El método de los elementos finitos aplicado al análisis structural”, España, Editora Noela, 2001

H. Lee, “Finite element simulations with ANSYS workbench 2019”, Taiwan, SCD Publications, 2019

E. Arnal, “Proyecto y construcción de galpones modulares”, Venezuela, Ed. Sidetur, 2007

NTE INEN 2492, “Láminas de acero recubiertas con zinc (galvanizadas) 0 recubiertas con aleación hierro zinc (galvano-recocido) mediante procesos de inmersión en caliente. Requisitos” Instituto Ecuatoriano de Normalización (INEN), Ecuador, 2009

NTE INEN 2221, “Paneles de acero. Requisitos y métodos de ensayo” Instituto Ecuatoriano de Normalización (INEN), Ecuador, 2016

NTE INEN 1623, “Perfiles abiertos de acero conformados en frío negros o galvanizados para uso estructural. Requisitos e inspección” Instituto Ecuatoriano de Normalización (INEN), Ecuador, 2015

NTE INEN 2526, “Perfiles especiales abiertos, livianos, pregalvanizados y conformados en frío para uso en estructuras portantes. Requisitos” Instituto Ecuatoriano de Normalización (INEN), Ecuador, 2010

X. Xhang, “Corrosion and electrochemistry of zinc”, New York, Ed. Springer Science+Business Media, 1996

D. Loachamin, A. Freire, D. Guerrero, M. Guerrón, “Análisis técnico-económico de naves industriales mediante interpolación no lineal de Lagrange” Revista técnica de la facultad de ingeniería Universidad del Zulia, 44(2), 104-116, Disponible en: https://doi.org/10.22209/rt.v44n2a05, 2021

F. Crisafulli, “Diseño sismorresistente de construcciones de acero”, Chile, Asociación latinoamericana del acero, 2018

NEC-SE-CG, “Norma ecuatoriana de la construcción. Cargas no sísmicas” Norma Ecuatoriana de la Construcción (NEC), Ecuador, 2015

J. McCormac, “Diseño de estructuras de acero”, México, Ed. Alfaomega, 2012

ANSYS Workbench 19.0, “Simulación en ingeniería”, 2018

ASCE 7-16, “Minimum design loads and associated criterio for buildings and other structures” American Society of Civil Engineers (ASCE), E.E.U.U., 2016

AISC 360-16, “Specification for structural Steel buildings” American Institute of Steel Construction (AISC), E.E.U.U., 2016

Published

2022-01-29

How to Cite

Páez Redrován, C. D., & Guerrero Cuasapaz, D. P. (2022). Circular self-supporting roofs applying finite elements method . Gaceta Técnica, 23(1), 72-93. https://doi.org/10.51372/gacetatecnica231.6

Issue

Section

Research articles