Evaluation of the mechanical properties of concrete by incorporating aloe vera extract as a carbonation rust inhibitor
DOI:
https://doi.org/10.51372/gacetatecnica262.7Abstract
The objective of the study was to evaluate the incidence of aloe vera extract as an inhibitor of carbonation-induced rust in concrete. Likewise, the study adopted an applied methodology and an experimental design, in which concrete was evaluated with different dosages of aloe vera extract in which the concentrations used for the incorporation of aloe vera in the concrete were 0,75%, 1,30% and 1,7%. In addition, the results indicate that the incorporation of aloe vera in concrete differently affects its properties, depending on the concentration. It was highlighted that at low concentrations of 0,75%, a slight increase in the carbonated zone and a slight improvement in compressive strength (5%) were observed, without significantly altering the consistency or flexural strength. However, at higher concentrations such as 1,30% and 1,70%, the effects were minor or even negative, suggesting that an excess of aloe vera could negatively affect the structure of the concrete
Downloads
References
J. R. D., Santos, C., Effting, M. P., Serbent, y J. B. Matsuda, «Biomineralization of calcium carbonate in concrete by the action of Bacillus pumilus””, Engenharia Sanitaria e Ambiental, 28. https://doi.org/10.1590/s1413-415220220277, 2023
A. F., Restrepo-Ramirez, C. A., Rúa-Machado, y Y. P. Arias-Jaramillo, “Optimizaciones en el diseño de mezclas de concreto para la sostenibilidad de un Área Metropolitana de Sudamérica implementando análisis de ciclo de vida de materiales”, Revista Hábitat Sustentable, 14 (1), 44–65. https://doi.org/10.22320/07190700.2024.14.01.04, 2014
D., Fan, J.-X., Lu, X.-S., Lv, T., Noguchi, R., Yu, y C. S. Poon, “Carbon capture and storage CO2 foam concrete towards higher performance: Design, preparation and characteristics”, Cement and Concrete Composites, 105925. https://doi.org/10.1016/j.cemconcomp.2025.105925, 2025
Q., Liu, Y., Yan, Y., Hu, Q., You, y G. Geng, “Carbonated waste paste calcined clay cement with enhanced CO2 mineralization and early strength”, Carbon Capture Science & Technology, 100343. https://doi.org/10.1016/j.ccst.2024.100343, 2024
R., Mi, G., Pan, y F. Zhou, “Does carbonation affect the microstructural inhomogeneity of recycled aggregate concrete?”, Journal of Building Engineering, 99, 111650. https://doi.org/10.1016/j.jobe.2024.111650, 2025
P. A., Aranda Villanueva, y K. N. Carrion Rabanal, “Compressive Strength of Concrete with Additions of Barley Bran Ash and Sugarcane Bagasse”, 22nd LACCEI International Multi-Conference for Engineering, Education and Technology LACCEI 2024. https://doi.org/10.18687/laccei2024.1.1.769, 2024
M., Carranza, S., Goicochea, y H.Infante, “Axial compressive strength of concrete f'c=210 and 280 kg/cm², when replacing aggregate with volcanic rock origin”, 22nd LACCEI International Multi-Conference for Engineering, Education and Technology LACCEI 2024. https://doi.org/10.18687/laccei2024.1.1.731, 2024
A. N., Colunche Idrogo, L. M., Mayta Tanta, A. C., Flores Quispe, y F. Del Carpio Delgado, “Comportamiento de concreto autocompactante de 28 mega pascales aplicando materias primas sostenibles y su influencia en el comportamiento mecánico”, Salud, Ciencia y Tecnología - Serie de Conferencias, 2, 395, https://doi.org/10.56294/sctconf2023395, 2023
A., Oblitas-Torres, W. Y., Torres-Muñoz, B. E., Oblitas-Gastelo, y F. A. Fernández-Otoya, “Análisis del bloque de concreto reforzado con EPS y PVC-U para estructuras”, DYNA, 91(234), 163–171, https://doi.org/10.15446/dyna.v91n234.116087, 2024
G. S., Martinez Ocharan, L. M., Merma Gallardo, y S. A. Taico Lezama, “Construction of granular bases in the pavement structure with the use of recycled concrete aggregate”, 22nd LACCEI International Multi-Conference for Engineering, Education and Technology LACCEI, https://doi.org/10.18687/laccei2024.1.1.1145, 2024
J. C. Z., Barbieri, M. T., Veit, C. E. T., Balestra, R., Schneider, T. P. d., Araújo, P. R. S., Bittencourt, G. d. C., Gonçalves, y A.Sandmann, “The Influence of Chitosan Addition on Sulfuric Acid-Attack and Carbonation of Concrete”, Revista de Gestão Social e Ambiental, 18(7), Artículo e06097. https://doi.org/10.24857/rgsa.v18n7-065, 2024
X., Chen, X., Liu, S., Cheng, X., Bian, X., Bai, X., Zheng, X., Xu, y Z.Xu, “Machine learning-based modelling and analysis of carbonation depth of recycled aggregate concrete”, Case Studies in Construction Materials, Artículo e04162. https://doi.org/10.1016/j.cscm.2024.e04162, 2024
A., Guzmán, S., Acosta, C.Dagne, “Evaluation of the carbonated front in concrete samples subjected to non - regular wetting-air drying cycles”, Revista ALCONPAT, 15 (1), pp. 35–49, https://doi.org/10.21041/ra.v15i1.732, 2025
P., Hajibabaee, A., Behnood, Ngo, T., y E. M. Golafshani, “Carbonation depth assessment of recycled aggregate concrete: An application of conformal prediction intervals”, Expert Systems with Applications, 126231. https://doi.org/10.1016/j.eswa.2024.126231, 2024b
L. C., Chiaradia, F. C. R., Almeida, M. T. P., Aguilar, E. J. P. Figueiredo, “Influence of temperature on the electrical resistivity of concrete and kinect corrosion of reinforcement”, Revista ALCONPAT, 14 (1), pp. 1 –12, DOI: https://doi.org/10.21041/ra.v14i1.709, 2024
E., Rucana Guadalupe, G. F., Delgado Calderón, N., Campos Vasquez, y J. L. Neyra Torres, “Influence of nanomaterial (Zinc Oxide) on the durability of conventional concrete’, 21st LACCEI International Multi-Conference for Engineering, Education and Technology LACCEI 2023, https://doi.org/10.18687/laccei2023.1.1.782, 2023
M. A., Burga Chávez, K. N., Carrion Rabanal, E. A., Castrejón Calderón, Chuquiruna L. V., Miranda, J., Taica Guevara, y J. S. Vásquez Peña, “Analysis of the Effects of the Addition of Sodium Bicarbonate in the Concrete”, 22nd LACCEI International Multi-Conference for Engineering, Education and Technology. Latin American and Caribbean Consortium of Engineering Institutions. https://doi.org/10.18687/laccei2024.1.1.75, 2024
N., Cortez, Y., Herrera Saenz, S., Ramirez Curi, L., Shuan Lucas, y A. V. Torre Carrillo, “Evaluation of Accelerated Carbonation of High Strength Concrete with Anodic Manganese Dioxide Nanoparticles”, 22nd LACCEI International Multi-Conference for Engineering, Education and Technology (LACCEI 2024), https://doi.org/10.18687/laccei2024.1.1.1221, 2024b
M., Sánchez, A., Hinostroza, K., Olarte, y J. Rodriguez, “Bloques de concreto para viviendas de albañilería estructural construidas en zona de atmósfera marina utilizando residuos de tubérculos de la industria alimentaria”, The 18th LACCEI International Multi-Conference for Engineering, Education, and Technology. Institutions, https://doi.org/10.18687/laccei2020.1.1.173, 2020
C., Quispe, D., Lino, J., Rodríguez, y A. Hinostroza, “Concrete cracking control in underwater marine structures using basalt fiber”, [IOP Publishing Ltd], http://hdl.handle.net/10757/655950, 2021
NACIONES UNIDAS, “Objetivo de Desarrollo Sostenible”, Disponible: https://www.un.org/sustainabledevelopment/es/objetivos-de-desarrollo-sostenible/, 2024
J. R. P. d., Silva, R. O. H. d., Silva, A. d. F., Silva, E. L. T., França, E. P., Hernández, y P. M. A. d. Farias, “Concreto de cimento Portland dopado com quitosana: propriedades mecânicas e microestrutural”, Matéria (Rio de Janeiro), 28(2). https://doi.org/10.1590/1517-7076-rmat-2023-0037, 2023
G., De Andrade Coni, Tafuri A., Costa, A., Gonçalves Costa, y G. Sakuma, (). “Degradação do concreto através da formação de ácido sulfúrico biogênico em uma Estação Elevatória de Esgoto (EEE)”, Revista ALCONPAT, 12(2), 279–295. https://doi.org/10.21041/ra.v12i2.571, 2022
R. A., García-León, A., Sanchez-Torrez, W., Rincon-Cardenas, N., Afanador-Garcia, L., Moreno-Pacheco, y M. Lanziano-Barrera, “Experimental study about the improvement of the mechanical properties of a concrete cobble using recyclable additives”, DYNA, 90(227), 45–55. https://doi.org/10.15446/dyna.v90n227.107046, 2023
Asociación Española de Normalización (AENOR), UNE-EN 13295:2005 – “Productos y sistemas para la protección y reparación de estructuras de hormigón. Métodos de ensayo. Determinación de la resistencia a la carbonatación”, Madrid, España: AENOR, 2005
ASTM International, “ASTM C143/C143M-20: Standard Test Method for Slump of Hydraulic-Cement Concrete”, West Conshohocken, PA, USA: ASTM International, 2020
ASTM International, “ASTM C39/C39M-21: Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens”, West Conshohocken, PA, USA: ASTM International, 2021
ASTM International, “ASTM C78/C78M-22: Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading)”, West Conshohocken, PA, USA: ASTM International, 2022
AOAC International, “Official Method 981.12 — pH of Acidified Foods, in Official Methods of Analysis of AOAC International”, 18th ed., Gaithersburg, MD: AOAC International, 2005

Published
How to Cite
Issue
Section
Copyright (c) 2025 Junior Arturo Gavilan Lizana, Jorge Luis Soto Chicchon, Javier Reynoso Oscanoa, Aldair Enrique Sandoval Tamariz, Fiorela Yselina Perez Pereda

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The opinions expressed by the authors do not necessarily reflect the position of the editor of the publication or UCLA. The total or partial reproduction of the texts published here is authorized, provided that the complete source and electronic address of this journal is cited. Authors have the right to use their articles for any purpose as long as it is done nonprofit. The authors can post on the internet or any other media the final approved version of their work.