Método de punto proximal para sucesiones de funciones de Bregman convergentes puntualmente

Autores/as

  • Eibar Hernández Universidad Centroccidental Lisandro Alvarado, Venezuela
  • Raquel Silvana Quintana Carlone Universidad Centroccidental Lisandro Alvarado, Venezuela
  • Clavel María Quintana Carlone Universidad Centroccidental Lisandro Alvarado, Venezuela

Palabras clave:

Método de punto proximal, distancias de Bregman, sucesiones de funciones, Bregman

Resumen

Se desarrolla una generalización del método de punto proximal clásico y el método de punto proximal con distancias de Bregman bajo condiciones de convexidad.  Partiendo de una sucesión arbitraria de funciones de Bregman convergente puntualmente, el método propuesto permite generalizar los casos clásicos que han sido desarrollados para una función Bregman fija, considerando propiedades que regulan el comportamiento de la sucesión de distancias de Bregman. Como consecuencia, se obtiene un método que converge al minimizador de la función objetivo.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Eibar Hernández, Universidad Centroccidental Lisandro Alvarado, Venezuela

Doctor en Ciencias mención matemática. Docente-Investigador en la Universidad Centroccidental Lisandro Alvarado, Venezuela

Raquel Silvana Quintana Carlone, Universidad Centroccidental Lisandro Alvarado, Venezuela

Profesora-Investigadora en la Universidad Centroccidental Lisandro Alvarado, Venezuela. Magister en Matemática mención optimización.

Clavel María Quintana Carlone, Universidad Centroccidental Lisandro Alvarado, Venezuela

Profesora-Investigadora en la Universidad Centroccidental Lisandro Alvarado, Venezuela. Doctora en Matemática mención optimización.

Citas

A. Auslender; M. Teboulle; S. Ben-Tiba. Interior proximal and multiplier methods based on second order homogeneous kernels. Mathematics of Operations Research, 3:645–668, 1999.

A. Iusem; M. Teboulle; B. Svaiter. Entropy-like proximal methods in convex programming. Mathematics of Operations Research, 4:790–814,1994.

J. Eckstein. Nonlinear proximal point algorithms using bregman functions with aplications to convex programming. Mathematics of Operations Resaerchs, 18:202–226, 1993.

J. Moreau. Proximité et dualité dans un espace hilbertien. Bull. Soc.Math, 93:97–116, 1976.

C. Lemarechal; Hiriart-Urruty. Convex analysis and minimization algorithm ii. Springer Verlag, 1996.

B. Martinet. Régularisation d’inéquations variationnelles par approximations successives. Reue Francaise deInformatique et Recherche Operationelle, 2:154–159, 1970.

R.T. Rockafellar. Monotone operators and the proximal point algorithm in convex programming. SIAM J. on Control and Optimization, 14:877–898, 1976.

H. Attouch; R. West. Ephigraphical analysis. Ann. Ins. Poincaré: Anal. Nonlineair, 1989.

A. Iusem. Métodos de ponto proximal em optimização. 20 Coloquio Brasileiro de Matemática, 1995.

A. Iusem. Augmented lagrangian methods and proximal point methods for convex optimization. Investigacion Operativa, 8:11–50, 1997.

C. Humes; J. Eckstein; P.J. Silva. Rescaling and stepsize selection in proximal methods using separable generalized distances. SIAM Journal on Optimization, 12:238–261, 2001.

K. Kiwiel. Proximal minimizations methods with generalized bregman functions. SIAM J. on Control and Optimization, 35:1142–1168, 1997.

C. Gonzaga; R. Castillo. Penalidades generalizadas e métodos de lagrangeano aumentado para promamacao nao linear. Dsc. these, U.F.R.J., 1998.

E. Hernandez; J.Campos; R.A. Castillo. A generalized like distance in convex programming. International Mathematical Forum, 2:1811–1830, 2007.

C. Gonzaga; E. Karas; L. Matioli; R. Castillo. An unified approach to multiplier and proximal methods. Technical Report. Universidad Federal de Santa Catarina Brasil, 2012.

C. Quintana. Un estudio sobre métodos de multiplicadores y métodos de punto proximal. Tesis Doctoral, 2016.

A. Larreal; E. Hernández. Método de punto proximal para sucesiones convergentes de funciones de Bregman caso convexo. Trabajo de grado de Maestría, Universidad Centroccidental Lisandro Alvarado, Venezuela, 2014.

R. Quintana. Un estudio sobre los métodos de punto proximal para familia de funciones de bregman dependientes de parámetros vectoriales. Tesis Doctoral, Universidad Centroccidental Lisandro Alvarado, Venezuela, 2018.

S. Pan; J. Chen. Entropy-like proximal algorithms based on a second-order homogeneous distance function for quasi-conex programming. Journal of Global Optimization, 39:555–575, 2007.

Publicado

2018-06-30

Cómo citar

[1]
E. Hernández, R. S. Quintana Carlone, y C. M. Quintana Carlone, «Método de punto proximal para sucesiones de funciones de Bregman convergentes puntualmente», Publ.Cienc.Tecnol, vol. 12, n.º 1, pp. 7-18, jun. 2018.

Número

Sección

Artículo de Investigación