Proximal point method for pointwise convergent sucessions of Bregman functions
Keywords:
proximal point method, Bregman distances, function successions, BregmanAbstract
A generalization of the classical proximal point method and the method of proximal point with Bregman distances is developed under conditions of convexity. Starting from an arbitrary punctually convergent sucession of Bregman functions, our method allows both the generalization to the classic cases that have been developed for a fixed Bregman function and the addition of properties that regulate the behavior of the succession of Bregman distances. Thus, a method that converges to the minimizer of the objective function is obtained.
Downloads
References
A. Auslender; M. Teboulle; S. Ben-Tiba. Interior proximal and multiplier methods based on second order homogeneous kernels. Mathematics of Operations Research, 3:645–668, 1999.
A. Iusem; M. Teboulle; B. Svaiter. Entropy-like proximal methods in convex programming. Mathematics of Operations Research, 4:790–814,1994.
J. Eckstein. Nonlinear proximal point algorithms using bregman functions with aplications to convex programming. Mathematics of Operations Resaerchs, 18:202–226, 1993.
J. Moreau. Proximité et dualité dans un espace hilbertien. Bull. Soc.Math, 93:97–116, 1976.
C. Lemarechal; Hiriart-Urruty. Convex analysis and minimization algorithm ii. Springer Verlag, 1996.
B. Martinet. Régularisation d’inéquations variationnelles par approximations successives. Reue Francaise deInformatique et Recherche Operationelle, 2:154–159, 1970.
R.T. Rockafellar. Monotone operators and the proximal point algorithm in convex programming. SIAM J. on Control and Optimization, 14:877–898, 1976.
H. Attouch; R. West. Ephigraphical analysis. Ann. Ins. Poincaré: Anal. Nonlineair, 1989.
A. Iusem. Métodos de ponto proximal em optimização. 20 Coloquio Brasileiro de Matemática, 1995.
A. Iusem. Augmented lagrangian methods and proximal point methods for convex optimization. Investigacion Operativa, 8:11–50, 1997.
C. Humes; J. Eckstein; P.J. Silva. Rescaling and stepsize selection in proximal methods using separable generalized distances. SIAM Journal on Optimization, 12:238–261, 2001.
K. Kiwiel. Proximal minimizations methods with generalized bregman functions. SIAM J. on Control and Optimization, 35:1142–1168, 1997.
C. Gonzaga; R. Castillo. Penalidades generalizadas e métodos de lagrangeano aumentado para promamacao nao linear. Dsc. these, U.F.R.J., 1998.
E. Hernandez; J.Campos; R.A. Castillo. A generalized like distance in convex programming. International Mathematical Forum, 2:1811–1830, 2007.
C. Gonzaga; E. Karas; L. Matioli; R. Castillo. An unified approach to multiplier and proximal methods. Technical Report. Universidad Federal de Santa Catarina Brasil, 2012.
C. Quintana. Un estudio sobre métodos de multiplicadores y métodos de punto proximal. Tesis Doctoral, 2016.
A. Larreal; E. Hernández. Método de punto proximal para sucesiones convergentes de funciones de Bregman caso convexo. Trabajo de grado de Maestría, Universidad Centroccidental Lisandro Alvarado, Venezuela, 2014.
R. Quintana. Un estudio sobre los métodos de punto proximal para familia de funciones de bregman dependientes de parámetros vectoriales. Tesis Doctoral, Universidad Centroccidental Lisandro Alvarado, Venezuela, 2018.
S. Pan; J. Chen. Entropy-like proximal algorithms based on a second-order homogeneous distance function for quasi-conex programming. Journal of Global Optimization, 39:555–575, 2007.
Published
How to Cite
Issue
Section
Copyright (c) 2018 Eibar Hernández, Raquel Silvana Quintana Carlone, Clavel María Quintana Carlone
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
The opinions expressed by the authors do not necessarily reflect the position of the publisher of the publication or of UCLA. The total or partial reproduction of the texts published here is authorized, as long as the complete source and the electronic address of this journal are cited.
The authors fully retain the rights to their works, giving the journal the right to be the first publication where the article is presented. The authors have the right to use their articles for any purpose as long as it is done for non-profit. Authors are recommended to disseminate their articles in the final version, after publication in this journal, in the electronic media of the institutions to which they are affiliated or personal digital media.