Implementation of the perceptron in the control chart for individual measurements

Authors

  • José Antonio Vásquez López Instituto Tecnol´ogico de Celaya, M´exico
  • Paloma Teresita Gutierrez Rosas Instituto Tecnol´ogico de Celaya, M´exico
  • Armando Ríos Lira Instituto Tecnol´ogico de Celaya, M´exico
  • Luis Gerardo Esparza Díaz Instituto Tecnol´ogico de Celaya, M´exico

Keywords:

Artificial intelligence, Artificial neural networks, Perceptron, Control charts, Statistical process control, Pattern recognition

Abstract

In this article the Perceptron artificial neural network is applied as a classifier system of out of control points, in the field of contrlol chart for individual measurements. The use of geometric properties of the Perceptron as a training method is introduced, replacing in consequence to the known training methods. Some experiments with numerical databases contaminated with altered data in global average was performed, and the ability of the detection of \out of control points" of the control chart with the implementation of the Perceptron trained by geometry was compared. The results reveal greater capacity in the Perceptron. This approach can be generalized to other types of control charts and patterns of natural and special variation, not considered in this research.

Downloads

Download data is not yet available.

Author Biographies

José Antonio Vásquez López, Instituto Tecnol´ogico de Celaya, M´exico

Departamento de Ingenier´ıa Industrial, Instituto Tecnol´ogico de Celaya, M´exico

Paloma Teresita Gutierrez Rosas, Instituto Tecnol´ogico de Celaya, M´exico

Departamento de Ingenier´ıa. Industrial, Estudiante de posgrado en Instituto Tecnol´ogico de Celaya, M´exico

Armando Ríos Lira, Instituto Tecnol´ogico de Celaya, M´exico

Departamento de Ingenier´ıa Industrial, Instituto Tecnol´ogico de Celaya, M´exico

Luis Gerardo Esparza Díaz, Instituto Tecnol´ogico de Celaya, M´exico

Departamento de Ingenier´ıa Industrial, Instituto Tecnol´ogico de Celaya, M´exico, 

References

Bishop, C. M. (2008). Neural Network for Pattern Recognition. New York: Oxford University Press.
Duda, R. O., Hart, P. E. & Stock, D. G. (2001). Pattern Classication. United States of América: John Wiley & Sons.
Guh, R. S. (2005). Real-time pattern recognition in statistical process control: a hybrid neural network/decision tree-based approach. IMechE, Part B: J. Engineering Manufacture, 219 (3), 283-298.
Gutiérrez-Rosas P.T., Vázquez-López J.A., Hernández Ripalda M.D., Hernández - González S., • López-Juárez I. (2012). Uso de la red neuronal Perceptrón para detección de cambios pequeños en la media en los gráficos de control.1st LACCEI International Symposium on Software Architec-ture and Patterns (LACCEI-ISAP-MiniPLoP2012), July 23-27, 2012, Panama City, Panama.
Montgomery, D. C. (2009). "Statistical Quality Control". United States of America: John Wiley & Sons, Inc.
Pacela, M., Semeraro, Q., & Anglania, A. (2004). Manufacturing Quality Control By Means Of A Fuzzy ART Network Trained On Natural Process Data. Engineering Applications Of Artificial Intelligence, 17, 83-96.
Rosenblatt, F. (1962). Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms. Spartan.
Theodoridis, S. & Koutroumbas, K. (2009). Pattern Recognition. Canada: Academic Press. The Mathworks Inc. (2009). MATLAB. Natick, MA.
Vázquez -López, J. A., López - Juárez, I., Peña-Cabrera, M. (2010). On the Use of the FuzzyARTMAP Neural Network for Pattern Recognition in Statistical Process Control using a Factorial Design. International Journal of Computers, Communications & Control, V, (2), 205-215.
Wafik, H. & Ahmed, G. (2012). A survey of control-chart pattern-recognition literature (1991-2010) based on a new conceptual classification scheme, Computers & Industrial Engineering.
Western Electric. (1956). Statistical Quality Control Handbook. Indianapolis, IN.: AT& T.
Zobel, C.W., & Cook, D.F.Q. (2004). Nottingham, An Augmented Neural Network Classification Approach To Detecting Mean Shifts In Correlated Manufacturing Process Parameters. International Journal Of Production Research , 42 (4), 741-758.

Published

2012-06-15

How to Cite

[1]
J. A. Vásquez López, P. T. Gutierrez Rosas, A. Ríos Lira, and L. G. Esparza Díaz, “Implementation of the perceptron in the control chart for individual measurements”, Publ.Cienc.Tecnol, vol. 6, no. 1, pp. 21-30, Jun. 2012.

Issue

Section

Research Article