Surjective multiband linear cellular automata and Smith's normal form

Authors

  • Ignacia Arcaya Universidad Central de Venezuela, Venezuela
  • Neptalí Romero Universidad Centroccidental Lisandro Alvarado, Venezuela

Keywords:

Smith normal form, multiband cellular automata

Abstract

In this paper the Smith normal form of certain matrices is used to provide another char acterization for the surjectivity of one-dimensional linear cellular automata with multiple local rules over the ring ZN of integers modulo N ≥ 2.. We reached this goal through an adaptation of a well known result of G. A. Hedlund which characterize the surjectivity of general one-dimensional cellular automata.

Downloads

Download data is not yet available.

Author Biographies

Ignacia Arcaya, Universidad Central de Venezuela, Venezuela

Departamento de Matem´atica, Universidad Central de Venezuela , Ciudad Universitaria, Caracas, Venezuela

Neptalí Romero, Universidad Centroccidental Lisandro Alvarado, Venezuela

Departamento de Matem´atica, Universidad Centroccidental Lisandro Alvarado, Barquisimeto, Lara, Apdo 3001,
Venezuela

References

J.P. Allouche and G. Skordev. Remarks on permutive cellular automata. J. Comput. Syst. Sci. 67, (2003) 174-182.

Arcaya and N. Romero. On a Hedlund's theorem and place-dependent cellular automata. Divulg. Mat. 15(2) 81-92 (2007).

N. A. Baas and T. Helvik. Higher order Cellular Automata. Adv. Complex Syst. 8. (2005) 169-192.

M. Itó, N. Osato and M. Nasu. Linear Cellular Automata over Zm. Journal of Computer and System Sciences, 27 (1983) 125-140.

R. Q. Jia. Multivariate Discrete Splines and Linear Diophantine Equations. Trans. Amer. Math. Soc. 340 (1993) 179-198.

F. Lazebnik. On Systems of Linear Diophantine Equations. Math. Mag. 69 (1996) 261-266.

G. A. Hedlund. Endomorphisms and Automorphisms of the shift dynamical systems. Math. Sys. Th. 3, (1969) 320-375.

J. Kari. Linear cellular automata with multiple state variables. Lecture Notes in Computer Science Vol. 1770, (2000) 110-121. Springer, New York.

E. Lange, H.O. Peitgen and G. Skordev. Fractal patterns in Gaussian and Stirling number tables. Ars Combin. 48, (1998) 3-26.

N. Romero, A. Rovella and F. Vilamajó. Remark on Cellular Automata and Shift Preserving Maps. Appl. Math. Lett. 19, (2006) 576-580.

B.L. van der Waerden. Algebra. Springer-Verlag. Berlin, Heidelberg, New York (1967).

Published

2009-07-10

How to Cite

[1]
I. Arcaya and N. Romero, “Surjective multiband linear cellular automata and Smith’s normal form”, Publ.Cienc.Tecnol, vol. 4, no. 1, pp. 17-23, Jul. 2009.

Issue

Section

Research Article