Generalized eigenvalues as an optimization problem: an easy option for real applications in physics problems

Authors

  • Joyne Contreras Universidad Centroccidental Lisandro Alvarado, Venezuela

Keywords:

Generalized eingenvalues, optimization, difusion-connection

Abstract

The problem of caculating eingenvalues has taken more importance, due to growing num- ber of applications involving matrices that represents several real system. In specific ap- plications as flow mechanics, the interest is gettings an extreme eingenvalues; so the op- timization approach emerge as a relevant option. In this work the utility of calculating generalized eingenvalues in the resulting matix from a discrete equation coming from a real applications, is described as an optimization problem. A polynomial type objective function proposed by Auchmuty is used.

Downloads

Download data is not yet available.

Author Biography

Joyne Contreras, Universidad Centroccidental Lisandro Alvarado, Venezuela

Departamento de Gerencia y Estudios Generales, Decanato de Agronomía

References

Medina, e I. Herrera. El Número de Péclet y su Significación en la Modelación de Transporte Difusivo de Contaminantes. 4to Congreso Internacional de Métodos Numéricos en Ingeniería y Ciencias Aplicadas. México 2007.
H. Gómez, I. Colominas, F. Navarrina1, M. Casteleiro. Un Nuevo Enfoque para El Tratamiento de los Términos Difusivos de la Ecuación de Convección - Difusión en el Método de Galerkin Discontinuo. CMNE/CILAMCE 2007
H. Elman, D. Silvester y A. Whaten. Finite Elements and Fast Iterative Solver: whit Applications in Incompressible Fluid Dynamics. Oxford University Press. 2005.
K. Beers. Numerical Methods for Chemicals Engineering. Cambridge University Press. 2007.
B. Parlet. The Symmetric Eigenvalue Problems. SIAM. Classics in Applied Mathematics. 1998.
D. Watkins. The Matrix Eigenvalue Problem. SIAM. 2007.
D. Kressner. Numerical Methods for General and Structured Eigenvalue Problems. Lecture Notes in Computationals Science and Engineering. Springer. 2000.
C. Yang. Solving Large-Scale Eigenvalue Problems in SciDAC Applications. Computational Research Division, Lawrence Berkeley National Lab.
G. Auchmuty. Globally and Rapidly Convergent Algorithms for Symmetric eigenproblems. SIAM Journal on Matrix Analysis and Applications, 12:690-706, 1991.
Nocedal and Wright. Numerical Optimizations. Springer. 2006.
D. Bertsekas. Nonlinear Programming. Athena Scientific. 1999.
M. Al-Baali. Descent Property and Global Convergence of the Fletcher-Reeves Method with Inexact Line Search. IMA JOURNAL of Numerical Analysis, 5(1):121-124. 1985.
G. Liu; J. Han; H. Yin. Global Convergence of the Fletcher-Reeves algorithm with Inexact Linesearch. Applied Mathematics, 10(1):75-82. 1995.

Published

2009-07-10

How to Cite

[1]
J. Contreras, “Generalized eigenvalues as an optimization problem: an easy option for real applications in physics problems”, Publ.Cienc.Tecnol, vol. 3, no. 2, pp. 31-40, Jul. 2009.

Issue

Section

Research Article