Synthesis and structural charaterization of the alloys (CuInTe2)1-x (Cu3-MT-Te4) x (MT: Nb, Ta with x = 1/10, 1/5, 1/3, 1/2 y 2/3)

Authors

  • Menjamin Salas Universidad Nacional Experimental de Los Llanos Occidentales Ezequiel Zamora, Venezuela.
  • Ernesto Calderón Universidad de Los Andes, Venezuela.
  • Miguel Soto Universidad de Los Andes, Venezuela.
  • Freddy Fernández Rojas Universidad de Los Andes, Venezuela.

Keywords:

Semiconductors, alloys, X-ray, diffraction, differential thermal analysis, phase diagram

Abstract

In this work we reported the characterization of the (CuInTe2)1-x (Cu3-BV- Te4)x (BV: Nb, Ta y x = 1/10, 1/5, 1/3, 1/2 y 2/3, alloys system using the techniques Scanning Electron Microscope (SEM), X- Ray Diffraction (XRD) and Differential Thermal Analysis (DTA). Alloys system was prepared by fusion and annealing direct fulfilling the rule of Grimm-Sommerfeld. The work is based on the thermograms of the CuInTe2 and Cu3NbTe4 compounds that were previously measured and incorporated in the phase diagrams for the system (CuInTe2)1-x (Cu3-MT-Te4) at x = 0 and x = 1; with the intention of obtaining the best information of the phases from x = 0 to x = 1. In these phase diagrams of the alloy family, we obtained in the concentration ranges, the following phases: in 0 < x < 0,1, the phase type chalcopyrite, for 0 < x <  0,9 two phases, sulvanita and chalcopyrite and for 0,9 < x < 1, the sulvanita phase. The solubility of the sulvanita Cu3NbTe4 in the chalcopyrite is of the approximately 10 % like solubility of the CuInTe2 in the sulvanita. This little solubility did impossible to increase to the breach of energy for the family chalcopyrite.

Downloads

Download data is not yet available.

References

[1] I. Repins; M.A. Contreras; B. Egaas; C. DeHart; J. Scharf; C.L. Perkins; B. To; R. Nouf. 19.9 Progress in Photovoltaics: Research and Applications, 16(3):235-239, 2008.

[2] K. Zitter; J. Schmand. Isomer shifts of the 6.2 kev nuclear transition of ta-181 in sulvanite type ternary phases cu3tax4 (x=s,se,te). Materials Research Bulletin, 19(6):801-805, 1984.

[3] K. Zitter; J. Schmand. Isomer shifts of the 6.2 kev nuclear transition of ta-181 in sulvanite type ternary phases cu3tax4 (x=s,se,te). Materials Research Bulletin, 19(6):801-805, 1984.

[4] A. Abo El Soud; T. Hendia; L. Soliman; H. Zayed; M. Kenawy. Effect of heat treatment on the structural and optical properties of culnte2 thin film. Journal of Materials Science, 28(5):1182-1188, 1993.

[5] B. Stanbery. Copper indium selenides and related materials for photovoltaic devices. Critical Reviews in Solid State and Materials Sciences, 27(2):73-117, 2002.

[6] D. Rudmann. Effects of sodium on growthh and properties of cu(in,ga)se2 thin films and solar cells. Trabajo de grado para optar al título de Doctor of Sciences. Swiss Federal Institute of Technology: Zurich. Department of Physics, Suiza, 2004.

[7] A. Timothy; B. Stanbery. Processing of cuinse2-based solar cells: Characterization of deposition processes in terms of chemical reaction analyses. University of Florida, Gainesville, 1999.

[8] P. Leo; E. Rogacheva. Phase diagrams and structure of some semiconductor a2cb2c alloy. Sov. Phys. Dokl, 12(5):503-506, 1967.

[9] G. Medvedkin; T. Ishibashi; T. Nishi; K. Hayata; Y. Hasewaga; K. Sato. Room temperature ferromagnetism in novel diluted magnetic semiconductor cd1-xmnxgep2. Japanese Journal of Applied Physics, 39(10A):L949-L951, 2000.

[10] G. Medvedkin; K. Hirose; T. Ishibashi; T. Nishi; V.G. Voevodin; K. Sato. Room temperature ferromagnetism in novel diluted magnetic semiconductor cd1-xmnxgep2. Journal of Crystal Growth, 236(4):609-612, 2002.

[11] S. Choi; G. Cha; S. Hong; S. Cho; Y. Kim; J. Ketterson; S. Jeong; G. Yi. Room-temperature ferromagnetism in chalcopyrite mn-doped znsnas2 single crystals. Solid State Communications, 122(3):165-167, 2002.

[12] S. Cho; S. Choi; G. Cha; S. Hong; Y. Kim; Y. Zhao; A. Preeman; J. Ketterson; B. Kim; B. Choi. Room-temperature ferromagnetism in (zn1-xmnx)gep2 semiconductors. Physical Review Letters, 88(25):1-4, 2002.

[13] S. Cho; S. Choi; G. Cha; S. Hong; Y. Kim; J. Ketterson; B. Kim; Y. Kim; B. Choi; J. Jeong. Ferromagnetic properties of chalcopyrite (zn1-xmnx)gep2 semiconductors. Journal of the Korean Physical Society, 42:S724-S726, 2003.

[14] R. Demin; L. Koroleva; S. Marenkin; V. Novotortsev; B. Trukhan; S. Varnavskiib; T. Aminovb; G. Shabuninab; R. Szymczakc; M. Baranc. Heterogeneous magnetic state in mn-doped cdgep2 and cugate2. In Proceedings of the Third Moscow International Symposium on Magnetism, 2005.

[15] R. Demin; L. Koroleva; S. Marenkin; S. Mikhailov; T. Aminov; H. Szymczakc; R. Szymczakc; M. Baran. Room-temperature ferromagnetism in mn-doped cdgeas2 chalcopyrite. Journal of Magnetism and Magnetic Materials, 290-291:1379-1382, 2005.

[16] L. Koroleva; V.Yu Pavlov; D. Zashchirinski?i; S. Marenkin; S. Varnavski?i; R. Szymczakc; V. Dobrovol´ski?i; L. Killinski?i. Room-temperature ferromagnetism in mn-doped cdgeas2 chalcopyrite. Physics of the Solid State, 49(11):2125-2125, 2007.

[17] T. Kamatani; H. Aka. Magnetic properties of chalcopyrite-based diluted magnetic semiconductors. Journal of Superconductivity, 16(1):95-97, 2003.

[18] T. Kamatani; H. Aka. The magnetic properties in transition metal-doped chalcopyrite semiconductors. Materials Science in Semiconductor Processsing, 6(5-6):389-391, 2003.

[19] T. Kamatani; H. Aka. Electronic structure and ferromagnetism of mn-substituted cuals2, cugas2, cuins2, cugase2, and cugate2. Physical Review B, 69(10):104422, 2004.

[20] P. Grima;E. Calderón; M. Muñoz; S. Durán; M. Quintero; E. Quintero; M. Morocoima; G. Delgado; H. Romero; J. Briceño; J. Fernández. Synthesis and characterization of cu3tain3se7 and cuta2inte4. physica status solidi (a), 205(7):1552-1559, 2008.

[21] G. Delgado; A. Mora; P. Grima; M. Quintero. Crystal structure of cufe2inse4 from x-ray powder diffraction. Journal of Alloys and Compounds, 454(1-2):306-309, 2008.

[22] G. Delgado; A.Mora; J. Contreras; P. Grima; S. Durán; M.Muñoz; M. Quintero. Crystal structure characterization of the quaternary compounds cufealse3 and cufegase3. Crystal Research and Technology, 44(5):548-552, 2009.

[23] G. Delgado; A.Mora; P. Grima; S. Durán; M. Muñoz; M. Quintero. Preparation and cristal structure characterization of cunigase3 and cuniinse3 quaternary compounds. Bulletin of Materials Science, 33(5):637-640, 2010.

[24] M. Salas; P. Grima-Gallardo; Ch. Power; M. Quintero; M. Soto; J. Briceño; H. Romero. Pressure dependence of raman-active mode frequencies in sulvanite cu3nbs4 ternary compound. Revista Latinoamericana de Metalurgia y Materiales, 34(1):86-91, 2014.

[25] M. Quintero; L. Dierker; J. Woolley. Crystallography and optical energy gap values for cd2x(cuin)ymn2zte2, alloy. Journal of Solid State Chemistry, 63(1):110-117, 1986.

[26] M. Quintero; P. Grima; R. Tovar; G. Pérez; J. Woolley. Phase relations and the effects of ordering in (agin)1-xmn2xte2 and (cuin)1-zmn2zte2 alloys. Physica Status Solidi, 107(1):205-211, 1988.

Published

2017-06-30

How to Cite

[1]
M. Salas, E. Calderón, M. Soto, and F. Fernández Rojas, “Synthesis and structural charaterization of the alloys (CuInTe2)1-x (Cu3-MT-Te4) x (MT: Nb, Ta with x = 1/10, 1/5, 1/3, 1/2 y 2/3)”, Publ.Cienc.Tecnol, vol. 11, no. 1, pp. 7-16, Jun. 2017.

Issue

Section

Research Article