Multi-agent architecture for a team of small robots

Authors

  • Maritza Bracho de Rodríguez Universidad Centroccidental Lisandro Alvarado, Venezuela
  • José Alí Moreno Universidad Central de Venezuela, Venezuela

Keywords:

Multiagent System, Distributed Robotics, RoboCup

Abstract

 Using the distributed artificial intelligence and the distribuited robotics as a frame of reference, particularly the RoboCup World Championship, in this work and architecture for multiple mobile, autonomous, rational and coordinated agents is proposed. This architecture is composed of a mechanism of reasoning or automatic decision making, a functional and control structure, an artificial vision system, a navigation system, and a robotic architecture for a team of small minibots with capacity of acting at the Small Size League. In the design, development and construction of the components are coupled methods and techniques of Emergent Computation with models based on the traditional knowledge representation of Artificial Intelligence, producing algorithms that combine properties as adaptibility, robustness, uniformity with representation, inference and universality. The Agents are conformed by mechanisms that integrate sensors out of the body of the robot with effectors embedded in the robot and processes behaviors which are exhibited by the minibots while they operate in real time. The execution and performance of the architecture proposed had been experimented and evaluated through the implementation of a Multiagent System thar allows the operation of one or more robots on a testbed conformed by a football field made to comply with RoboCup rules.

Downloads

Download data is not yet available.

Author Biographies

Maritza Bracho de Rodríguez, Universidad Centroccidental Lisandro Alvarado, Venezuela

Unidad de Inteligencia Artificial, Decanato de Ciencias y Tecnología, Universidad Centroccidental Lisandro Alvarado, Barquisimeto, Venezuela

José Alí Moreno, Universidad Central de Venezuela, Venezuela

Laboratorio de Computación Emergente, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela

References

Ferber, J. (1999). MultiAgent Systems. An Introduction to Distributed Artificial Intelligence. Harlow, England: Addison Wesley.

Kitano, H., Asada M., Kuniyoshi, Y., Noda, I., Osawa, E., Matsubara, H. (1997). RoboCup a Challenge Problem for AI and Robotics. En K. Hiroaki (Eds). Lectures Notes in Computer Science, Lectures Notes in Artificial Intelligence: Vol. 1395. RoboCup–97: Robot Soccer World Cup I. (pp. 1-19). Berlin: Springer Verlag.

RoboCup Small Size League. Disponible en: http://small-size.informatik.uni-bremen.de/ , http://www-2.cs.cmu.edu/%7Ebrettb/robocup/

Behring, C., Bracho, M., Castro, M., Moreno, J. A, (2000). An Algorithm for Robot Path Planning with Cellular Automata. En S. Bandini, T. Worsch (Eds.). Theoretical and Practical Issues on Cellular Automata, Proceedings of the Fourth International Conference on Cellular Automata for Research and Industry, Karlsruhe, 4-6 October 2000, (pp. 11-19). Berling: Springer Verlag.

Bracho, M., Castro, M., Moreno, J. A. (2000). Robot Motion Planning with Cellular Automata. Proceedings of The 4th World Multiconference on Systemics, Cybernetics and Informatics, The 6th International Conference on Information Systems, Analysis and Synthesis. USA, 9, 90-95.

Mitchell. M. (1996). Computation in Cellular Automata: A Selected Review. En T. Gramss, S. Bornholdt, M. Gross, M. Mitchell, T. Pellizzari (Eds). Nonstandard Computation. Weinheim: VCH Verlagsgesellschaft.

Toffoli, T., Margolus, M. (1987). Cellular Automata Machine. Cambridge, MA: MIT Press.

Wolfram, S. (1984). Computation Theory of Cellular Automata. Communications in Mathematical Physics, 96, 15-57.

von Neumann, J. (1966). Theory of Self-reproducing Automata. Champaign: University of Illinois Press

Weisstein, E. von Neumann Neighborhood. Disponible en MathWorld--A Wolfram Web Resource, http://mathworld.wolfram.com/vonNeumannNeighborhood.html

Moore, E. (1964). Mathematics in the Biological Sciences. Scientific American, 211, 148-164.

Weisstein, E. Moore Neighborhood. Disponible en MathWorld--A Wolfram Web Resource http://mathworld.wolfram.com/MooreNeighborhood.html

Cao, Y., Fukunaga, A., Kahng, A. (1997). Cooperative Mobile Robotics: Antecedents and Directions. Autonomous Robots, 4, 1-23.

Dudek, G., Jenkin, M., Milios, E. (2002). A Taxonomy of MultiRobot Systems. En T. Balch, L. Parker (Eds.), Robot Teams: From Diversity to Polymorphism. Natick, MA: A K Peters.

Parker, L., (2000). Current State of the Art in Distributed Robot Systems. En L. Parker, G. Bekey, J. Barhen (Eds.). Distributed Autonomous Robotic Systems 4. (pp. 3-12). Heilderberg: Springer Verlag.

Bracho, M., Castro, M., Moreno, J. A. (2001). A Robotic Arquitecture for RoboCup. Actas de IX Conferencia de la Asociación Española para la Inteligencia Artificial , IV Jornadas de Transferencia Tecnológica de Inteligencia Artificial, España, 1, 675-684.

Castro, M. (2000). Control en Tiempo Real de un Mini Robot Físico por Medio de Técnicas de Computación Emergente. Trabajo de Grado aprobado para obtener el Título Magíster Scientiarum en Investigación de Operaciones. Universidad Central de Venezuela. Caracas, Venezuela.

Published

2007-07-30

How to Cite

[1]
M. Bracho de Rodríguez and J. A. Moreno, “Multi-agent architecture for a team of small robots”, Publ.Cienc.Tecnol, vol. 1, no. 1, pp. 10-21, Jul. 2007.

Issue

Section

Research Article