Heat conduction in perforated metal plates. Part I: Model and weak solution in a step of time

Authors

  • Wilfredo Angulo Universidad Centroccidental Lisandro Alvarado, Venezuela
  • Eligio Colmenarez Universidad Centroccidental Lisandro Alvarado, Venezuela

Keywords:

Weak formulation, heat conduction model, well-posedness problem

Abstract

We propose a weak formulation of a heat conduction model for the detection of holes in metallic plates. An implicit discretization in time leads to a coupled, linear system of partial differential equations. At each time step, the system reduces to a Helmholtz problem with Robin boundary conditions and we show that its equivalent weak formulation is a well-posedness problem.

Downloads

Download data is not yet available.

Author Biographies

Wilfredo Angulo, Universidad Centroccidental Lisandro Alvarado, Venezuela

Departamento de Matemática, Decanato de Ciencias y Tecnología

Eligio Colmenarez, Universidad Centroccidental Lisandro Alvarado, Venezuela

Licenciatura en Ciencias Matemáticas, Decanato de Ciencias y Tecnología

References

R. A. Adams, Sobolev Spaces, New York: Academic Press, (1975).
O. Axelsson and V. A. Barker, Finite Element Solution of Boundary Value Problems. Theory and Computation, Orlando: Computer Science and Applied Mathematics, Academic Press, (1984).
H. Brezis, Analyse fonctionnelle: Theorie et applications, Collection "Mathématiques Appliquees pour la Martrise", Paris: Masson,(1983).
A. Chaves, S. Coutin y F. Just, Simulación numérica y estudio paramétrico de un método térmico para la detección de daños en metales y materiales compuestos tipo carbono-carbono, Rev. Int. de Desastres Naturales, Accidentes e Infraestructura Civil, 4(2), 2002, 141-152.
R. Dautray et J.-L. Lions, Analyse mathématique et calcul numerique pour les sciences et les techniques, Vol. I, Paris: Masson, (1987).
J.J. Gil, F. A. Just-Agosto, D. Serrano y B. Shafiq, Detección de daños usando transferencia de calor por conducción, Rev. Int. de Desastres Naturales, Accidentes e Infraestructura Civil, 3(2), 2004, 129-141.
J. L. Lionsans E. Magenes, Problemes aux Limites non Homogenes et Applications, I, Paris: Dunod, {1968).
J. Necas, Les methodes directes en theorie des equations elliptiques, Paris: Masson, (1967).
Quarteroni, R. Sacco ans F. Saleri, Numerical Mathematics, New York: Springer, (2000).

Published

2007-07-30

How to Cite

[1]
W. Angulo and E. Colmenarez, “Heat conduction in perforated metal plates. Part I: Model and weak solution in a step of time”, Publ.Cienc.Tecnol, vol. 1, no. 1, pp. 33-38, Jul. 2007.

Issue

Section

Research Article