Brane Topology

Authors

  • Edmundo Castillo Universidad Central de Venezuela, Venezuela
  • Rafael Díaz Universidad Nacional Experimental de las Fuerzas Armadas. Venezuela

Keywords:

Brane Topology, Manifolds with corners, Graded Categories

Abstract

We construct for each pair of compact oriented manifolds Y and M the category H(MS(Y)) of homologies of Y-branes extended between D-branes embedded in M using transversal intersecttion in the sense of Chas and Sullivan. AMS Subjec-classification: 18D35, 18G35, 18G55, 57R90.

Downloads

Download data is not yet available.

Author Biographies

Edmundo Castillo, Universidad Central de Venezuela, Venezuela

Escuela de Matemáticas, Universidad Central de Venezuela, Caracas

Rafael Díaz, Universidad Nacional Experimental de las Fuerzas Armadas. Venezuela

Grupo de Física-Matemática, Universidad Experimental de las Fuerzas Armadas, Caracas

References

M. Atiyah, Topological quantum field theory, Inst. Hautes Et u des Sci. Publ. Math. 68 (1988) 1 75 186.
J. Baez, J. Dolan, From finite set to Feynman diagrams, e n B. Engquist W. Schmid ( Ed s.), Mathematics Unlimited 2001 a n d Beyond , Springer, Berlín, 2001 , pp. 29- 50.
J. C. Baez, J. Dolan, Categorification, en E. Getzler, M. Kapranov (Eds.), Higher category theory, Evanston, IL, 1997, Contemp. Mat h., vol. 230, Amer. Math. Soc., Provi d e n ce, RI, 1 998, pp. 1-36.
H. Blandín , R. Díaz, On the combinatorics of hypergeometric functions, Adv. Stud. Contemp. Mat h. 14 (1) (2007) 153-160.
H. Blandín , R. Díaz, Rational combinatorics, Adv. in Appl. Mat h. (2007), doi: 10.1016 f j .aam.2006.12.006.
E. Castillo, R. Díaz , Homology and manifolds with corners, prepublicación, ar- X i v.math.GT /0611839.
E. Castillo, R. Díaz, Homological matrices, en S. Paycha, B. Ur i be (Eds.), Geometr i c and Topological Methods for Quantum Field Theory , Contemp. Math. 432 , A m er. Mat h. Soc., Provide n ce, pp. 1 8 1 192, 2007.
E. Castillo and R. Díaz, Homological q u a n tum field theory, prepubliación, ar Xiv.math.KT /0509532.
E. Castillo, R. Díaz, Membrane Topology, Adv. Stud. Contemp. Math. 15 (1) (2007) 59-68.
E. Castillo, R. Díaz, Rota-Baxter categories, prepublicación, arXiv:math/0612218.
M. Chas, D. Sullivan, String Topology, prepublicación, arXiv.math.GT/9911159.
J. Christensen, L. Crane, Causal sites as quantum geometry, J. Math. Phys. 46 (2005) 12250J.
L. Crane, l. Frenkel, Four-dimensional topological quantum field theory, opf categories, and the canonical bases, J. Math. Phys. 35 (10) (1994) 5136-5154.
L. Crane, D. Yetter, Examples of categorification, Gahiers Topologie Géom. Defférentielle Catég. 39 (1) (1998) 3-25.
R. Díaz, E. Pariguan, Super, quantum and noncommutative species, prepublicación, arXiv: math.CT/0509674.
M.G. Khovanov, A categorification of Jones polynomial, Duke Math. J. 143 (2) (1986) 288-348.
T. Kimura, Topological Quantum Field Theory and Algebraic Structures, en Lecture Notes in Phys. 662, Springer, Berlín, 2005, pp. 255-287.
T. Kimura, J. Stasheff, A. Voronov, On operads structures of moduli spaces and string theory, Comm. Math. Phys. 171 (1) (1995) 1-25.
E. Lupercio, B. Uribe, Topological Quantum Field Theories, en S. Paycha, B. Uribe (Eds.), Geome tric and Topological Methods for Quantum Field Theory, Contemp. Math. 432, Amer. Math. Soc., Providence, pp. 73-98, 2007.
J. D. Stasheff, Homotopy associativity of H-spaces I, Trans. Amer. Math. Soc. 108 (1963) 275-292.
J. D. Stasheff, Homotopy associativity ofH-spaces II, Trans. Amer. Math. Soc. 108 (1963) 293-312.
D. Sullivan, Open and closed string theory interpreted in classical algebraic topology, en Topology, Geometry and Quantum Field Theory, London Math. Soc. Lecture Notes 308, Cambridge Univ. Press, Cambridge, 2004, pp. 344-357.
E. Witten, Non-commutative geometry and string field theory, Nuclear Phys. B 268 (1986) 253-294.
E. Witten, B. Zwiebach, Algebraic structures and differential geometry in two-dimensional string theory, Nuclear Phys. B 377 (1992) 55-112.
B. Zwiebach, Closed string field theory: quantum action and the BV master equation, Nuclear Phys. B 390 (1993) 33-152.

Published

2007-12-30

How to Cite

[1]
E. Castillo and R. Díaz, “Brane Topology”, Publ.Cienc.Tecnol, vol. 1, no. 2, pp. 62-75, Dec. 2007.

Issue

Section

Research Article