Brane Topology
Keywords:
Brane Topology, Manifolds with corners, Graded CategoriesAbstract
We construct for each pair of compact oriented manifolds Y and M the category H(MS(Y)) of homologies of Y-branes extended between D-branes embedded in M using transversal intersecttion in the sense of Chas and Sullivan. AMS Subjec-classification: 18D35, 18G35, 18G55, 57R90.
Downloads
References
J. Baez, J. Dolan, From finite set to Feynman diagrams, e n B. Engquist W. Schmid ( Ed s.), Mathematics Unlimited 2001 a n d Beyond , Springer, Berlín, 2001 , pp. 29- 50.
J. C. Baez, J. Dolan, Categorification, en E. Getzler, M. Kapranov (Eds.), Higher category theory, Evanston, IL, 1997, Contemp. Mat h., vol. 230, Amer. Math. Soc., Provi d e n ce, RI, 1 998, pp. 1-36.
H. Blandín , R. Díaz, On the combinatorics of hypergeometric functions, Adv. Stud. Contemp. Mat h. 14 (1) (2007) 153-160.
H. Blandín , R. Díaz, Rational combinatorics, Adv. in Appl. Mat h. (2007), doi: 10.1016 f j .aam.2006.12.006.
E. Castillo, R. Díaz , Homology and manifolds with corners, prepublicación, ar- X i v.math.GT /0611839.
E. Castillo, R. Díaz, Homological matrices, en S. Paycha, B. Ur i be (Eds.), Geometr i c and Topological Methods for Quantum Field Theory , Contemp. Math. 432 , A m er. Mat h. Soc., Provide n ce, pp. 1 8 1 192, 2007.
E. Castillo and R. Díaz, Homological q u a n tum field theory, prepubliación, ar Xiv.math.KT /0509532.
E. Castillo, R. Díaz, Membrane Topology, Adv. Stud. Contemp. Math. 15 (1) (2007) 59-68.
E. Castillo, R. Díaz, Rota-Baxter categories, prepublicación, arXiv:math/0612218.
M. Chas, D. Sullivan, String Topology, prepublicación, arXiv.math.GT/9911159.
J. Christensen, L. Crane, Causal sites as quantum geometry, J. Math. Phys. 46 (2005) 12250J.
L. Crane, l. Frenkel, Four-dimensional topological quantum field theory, opf categories, and the canonical bases, J. Math. Phys. 35 (10) (1994) 5136-5154.
L. Crane, D. Yetter, Examples of categorification, Gahiers Topologie Géom. Defférentielle Catég. 39 (1) (1998) 3-25.
R. Díaz, E. Pariguan, Super, quantum and noncommutative species, prepublicación, arXiv: math.CT/0509674.
M.G. Khovanov, A categorification of Jones polynomial, Duke Math. J. 143 (2) (1986) 288-348.
T. Kimura, Topological Quantum Field Theory and Algebraic Structures, en Lecture Notes in Phys. 662, Springer, Berlín, 2005, pp. 255-287.
T. Kimura, J. Stasheff, A. Voronov, On operads structures of moduli spaces and string theory, Comm. Math. Phys. 171 (1) (1995) 1-25.
E. Lupercio, B. Uribe, Topological Quantum Field Theories, en S. Paycha, B. Uribe (Eds.), Geome tric and Topological Methods for Quantum Field Theory, Contemp. Math. 432, Amer. Math. Soc., Providence, pp. 73-98, 2007.
J. D. Stasheff, Homotopy associativity of H-spaces I, Trans. Amer. Math. Soc. 108 (1963) 275-292.
J. D. Stasheff, Homotopy associativity ofH-spaces II, Trans. Amer. Math. Soc. 108 (1963) 293-312.
D. Sullivan, Open and closed string theory interpreted in classical algebraic topology, en Topology, Geometry and Quantum Field Theory, London Math. Soc. Lecture Notes 308, Cambridge Univ. Press, Cambridge, 2004, pp. 344-357.
E. Witten, Non-commutative geometry and string field theory, Nuclear Phys. B 268 (1986) 253-294.
E. Witten, B. Zwiebach, Algebraic structures and differential geometry in two-dimensional string theory, Nuclear Phys. B 377 (1992) 55-112.
B. Zwiebach, Closed string field theory: quantum action and the BV master equation, Nuclear Phys. B 390 (1993) 33-152.
Published
How to Cite
Issue
Section
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
The opinions expressed by the authors do not necessarily reflect the position of the publisher of the publication or of UCLA. The total or partial reproduction of the texts published here is authorized, as long as the complete source and the electronic address of this journal are cited.
The authors fully retain the rights to their works, giving the journal the right to be the first publication where the article is presented. The authors have the right to use their articles for any purpose as long as it is done for non-profit. Authors are recommended to disseminate their articles in the final version, after publication in this journal, in the electronic media of the institutions to which they are affiliated or personal digital media.