Fejér type inequalities for m-convex functions

Authors

  • Mireya Bracamonte Universidad Centroccidental Lisandro Alvarado, Venezuela
  • José Giménez Universidad de Los Andes, Venezuela
  • Nelson Merentes Universidad Central de Venezuela, Venezuela
  • Miguel Vivas Universidad Centroccidental Lisandro Alvarado, Venezuela

Keywords:

Convex, m-convex, Fejér inequalities

Abstract

In this paper we present some generalizations of the classical inequalities of Fejér for m-convex functions.

Downloads

Download data is not yet available.

References

[1] A. W. Roberts and D. E. Varberg. Convex Functions. Academic Press, New York-London, 1973.
[2] Ch. Hermite. Sur deux limites d’une intégrale définie. Mathesis, 82(3), 1883.
[3] J. Hadamard. Étude sur les propriétés des fonctions entières en particulier d’une fonction considérée par riemann. J. Math. Pures Appl., 58:171–215, 1893.
[4] L. Fejér. Über die fourierreihen, II. Math. Naturwiss. Anz Ungar. Akad. Wiss, 24:369–390, 1906.
[5] S. S. Dragomir and C. E. M. Pearce. Selected topics on hermite-hadamard in- equalities and applications. RGMIA Monographs, Victoria University, (ONLINE http://rgmia.vu.edu.au/monographs/), 2000.
[6] J. E. Pecari´c, F. Proschan, and Y. L. Tong. Convex Functions, Partial Orderings, and Statistical Applications. Acad. Press,Inc., Boston, 1992.
[7] C. P. Niculescu and L. E. Persson. Convex Functions and their Applications. A Contemporary Approach, CMS Books inMathematics, volume 23. Springer-Verlag, New York, 2006.
[8] M. Kuczma. An Introduction to the Theory of Functional Equations and Inequalities. Cauchy’s Equation and Jensen’s Inequality. PWN - Uniwersytet Slski, Warszawa-Krakow-Katowice 1985. : Birkhäuser, Basel-Boston-Berlin, second edition edition, 2009.
[9] M. Bessenyei and Zs. Páles. Characterization of convexity via hadamard’s inequality. Math. Inequal. Appl., 9(1):53–62, 2006.
[10] C. Zalinescu. Convex Analysis in General Vector Spaces. World Scientific, new jersey edition, 2002.
[11] G. Toader. Some generalizations of the convexity. In Proc. Colloq. Approx. Opt. Cluj-Napoca, pages 329–338, 1984.
[12] S. Toader. The order of star-convex function. Bull Applied and Comp Math., 85-B(BAM-1473):347–350, 1998.
[13] S.S. Dragomir and G. Toader. Some inequalities for m-convex functions. Studia Univ. Babes-Bolyai Math., 38(1):21–28, 1993.
[14] M. Klaricic Bacul, J. Pecaric, and M. Ribi?ci´c. Companion inequalities to jensen’s inequality for m-convex and (α,m) convex functions. J. Inequal. Pure and Appl. Math, 7(5):26–35, 2006. Art. 194.
[15] S. S. Dragomir. On some new inequalities of hermite-hadamard type for m-convex functions. Tamkang Journal of Mathematics, 33(1):45–55, 2002.
[16] M. Z. Zarikaya, E. Set, and M. E. Ozdemir. On some new inequalities of hadamard type involving h-convex functions. Acta Math. Univ Comenianae, 79(2):265–272, 2010.

Published

2018-05-31

How to Cite

[1]
M. Bracamonte, J. Giménez, N. Merentes, and M. Vivas, “Fejér type inequalities for m-convex functions”, Publ.Cienc.Tecnol, vol. 10, no. 1, pp. 7-11, May 2018.

Issue

Section

Research Article