Fejér type inequalities for m-convex functions
Keywords:
Convex, m-convex, Fejér inequalitiesAbstract
In this paper we present some generalizations of the classical inequalities of Fejér for m-convex functions.
Downloads
References
[2] Ch. Hermite. Sur deux limites d’une intégrale définie. Mathesis, 82(3), 1883.
[3] J. Hadamard. Étude sur les propriétés des fonctions entières en particulier d’une fonction considérée par riemann. J. Math. Pures Appl., 58:171–215, 1893.
[4] L. Fejér. Über die fourierreihen, II. Math. Naturwiss. Anz Ungar. Akad. Wiss, 24:369–390, 1906.
[5] S. S. Dragomir and C. E. M. Pearce. Selected topics on hermite-hadamard in- equalities and applications. RGMIA Monographs, Victoria University, (ONLINE http://rgmia.vu.edu.au/monographs/), 2000.
[6] J. E. Pecari´c, F. Proschan, and Y. L. Tong. Convex Functions, Partial Orderings, and Statistical Applications. Acad. Press,Inc., Boston, 1992.
[7] C. P. Niculescu and L. E. Persson. Convex Functions and their Applications. A Contemporary Approach, CMS Books inMathematics, volume 23. Springer-Verlag, New York, 2006.
[8] M. Kuczma. An Introduction to the Theory of Functional Equations and Inequalities. Cauchy’s Equation and Jensen’s Inequality. PWN - Uniwersytet Slski, Warszawa-Krakow-Katowice 1985. : Birkhäuser, Basel-Boston-Berlin, second edition edition, 2009.
[9] M. Bessenyei and Zs. Páles. Characterization of convexity via hadamard’s inequality. Math. Inequal. Appl., 9(1):53–62, 2006.
[10] C. Zalinescu. Convex Analysis in General Vector Spaces. World Scientific, new jersey edition, 2002.
[11] G. Toader. Some generalizations of the convexity. In Proc. Colloq. Approx. Opt. Cluj-Napoca, pages 329–338, 1984.
[12] S. Toader. The order of star-convex function. Bull Applied and Comp Math., 85-B(BAM-1473):347–350, 1998.
[13] S.S. Dragomir and G. Toader. Some inequalities for m-convex functions. Studia Univ. Babes-Bolyai Math., 38(1):21–28, 1993.
[14] M. Klaricic Bacul, J. Pecaric, and M. Ribi?ci´c. Companion inequalities to jensen’s inequality for m-convex and (α,m) convex functions. J. Inequal. Pure and Appl. Math, 7(5):26–35, 2006. Art. 194.
[15] S. S. Dragomir. On some new inequalities of hermite-hadamard type for m-convex functions. Tamkang Journal of Mathematics, 33(1):45–55, 2002.
[16] M. Z. Zarikaya, E. Set, and M. E. Ozdemir. On some new inequalities of hadamard type involving h-convex functions. Acta Math. Univ Comenianae, 79(2):265–272, 2010.
Published
How to Cite
Issue
Section
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
The opinions expressed by the authors do not necessarily reflect the position of the publisher of the publication or of UCLA. The total or partial reproduction of the texts published here is authorized, as long as the complete source and the electronic address of this journal are cited.
The authors fully retain the rights to their works, giving the journal the right to be the first publication where the article is presented. The authors have the right to use their articles for any purpose as long as it is done for non-profit. Authors are recommended to disseminate their articles in the final version, after publication in this journal, in the electronic media of the institutions to which they are affiliated or personal digital media.