Uniformly bounded superposition operators in the space of second bounded variation functions in the sense of Shiba

Authors

  • José Giménez Universidad de Los Andes, Venezuela
  • Nelson Merentes Universidad Central de Venezuela, Venezuela
  • Ebner Pineda Universidad Centroccidental Lisandro Alvarado, Venezuela
  • Luz Rodríguez Universidad Centroccidental Lisandro Alvarado, Venezuela

Keywords:

Bounded variation, superposition operator, Waterman-Shiba

Abstract

In this paper we introduce the notion of “function of second bounded variation” in the sense of Shiba, and we show that if a superposition operator applies the space of all such functions on itself and it is uniformly bounded, then its generating function satisfies a Matkowski condition.

 

Downloads

Download data is not yet available.

References

C. Jordan, Sur la serie de Fourier. C. R. Acad. Sci. Paris. 2: 228-230, 1881.

I. Lakatos, Proofs and Refutations, The logic of Mathematical Discovery, Cambridge University Press, 1976.

D. Waterman, On the convergence of Fourier series of functions of bounded variation. Studia Math. 44: 107-117, 1972.

M. Shiba, On the absolute convergence of Fourier series of functions class _p BV. Sci. Rep. Fukushima Univ. 30: 7-10, 1980.

R.G. Vyas, Properties of functions of generalized bounded variation. Mat. Vesnik, 58: 91-96, 2006.

J. Appell; J. Bana´s; N. Merentes, Bounded Variation and Around, De Gruyter Series in Nonlinear Analysis and Applications 17, Walter de Gruyter, Berlin/Boston 2014.

G. Bourdaud; M. Lanza de Cristoforis; W. Sickel, Superposition operators and functions of bounded p-variation, Rev. Mat. Iberoamer. 22(2): 455-487, 2006.

M. Josephy, Composing functions of bounded variation, Proc. Amer. Math. Soc. 83(2): 354-356, 1981.

M. Chaika; D. Waterman, On the invariance of certain classes of functions under composition, Proceedings of the American Mathematical Society, 43: 345-348, 1974.

J. Matkowski, Functional equations and Nemytskij operators, Funkc. Ekvacioj Ser. Int. 25: 127-132, 1982.

J. Appell; N. Guanda; N. Merentes; J.L. Sánchez, Some boundedness and continuity properties of nonlinear composition operators: a survey, Comm. Applied Anal. 15( 2-4):153-182, 2011.

J. Appell; N. Guanda; M. Väth, Function spaces with the Matkowski property and degeneracy phenomena for composition operators, Fixed Point Theory, 12 (2): 265-284, 2011.

Ch. J. De La Vallée Poussin, Sur l'intégrale de Lebesgue, Trans. Amer. Math. Soc., 16: 435-501, 1908.

M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities. Second Edition. Birkh¨auser Verlag AG Basel.Boston.Berlin, 2009.

M.Wróbel, Uniformly Bounded Nemytskij operators between the Banach spaces of functions of bounded n-th variation. Journal ofmathematical Analysis and Applications. 391: 451-456, 2012.

Published

2016-12-15

How to Cite

[1]
J. Giménez, N. Merentes, E. Pineda, and L. Rodríguez, “Uniformly bounded superposition operators in the space of second bounded variation functions in the sense of Shiba”, Publ.Cienc.Tecnol, vol. 10, no. 2, pp. 49-58, Dec. 2016.

Issue

Section

Research Article