Analysis of efficiency of artificial intelligence as production factor in countries
DOI:
https://doi.org/10.13140/RG.2.2.18693.50400Keywords:
Efficiency, artificial intelligence, DEA, countries, competitivenessAbstract
Artificial intelligence is projected as a new factor of production to improve the competitiveness of countries. This research analyzes the technical efficiency of the application of Artificial Intelligence (AI) as a production factor in companies located in Europe, North America, Asia and Latin America aimed at increasing their competitiveness. Research data on the impact of AI in the world economies, figures on startups, the global index of innovation and investments in AI are taken. Through Data Envelopment Analysis (DEA) the technical efficiency is measured. The analysis was structured in three clusters: by countries with and without China, and by regions with companies with investments in AI. The analysis by countries showed that Holland, Sweden, Chile, and Colombia are more efficient, while the USA, Japan, and Brazil are less efficient. With respect to the second analysis, China and Latin America stand out as efficient. For the latter case, Europe and Latin America proved efficient. It is observed that the growth in the global index of innovation, as well as the creation of economic policies in countries for the development of this technology, are keys to predicted economic growth.
Downloads
References
J. Mc Carthy: M. Minsky: N. Rochester: C. Shannon. A proposal for the darthmouth summer research project on artificial intelligence, August 31, 1955. AI Magazine, 27(4):12, 2006.
J. H. Fetzer. What is Artificial Intelligence?.Artificial Inteligence: Its scope and limits. Studies in Cognitive Systems, 3-27, Springer, Dordrecht, 1990.
A. Rao; G. Verweij. Sizing the prize. What’s the real value of AI for your business and how can you capitalise?, Pwc España, 2017.
E. Brynjolfsson; D. Rock; S. Chad. Artificial Intelligence and the Modern Productivity Paradox: A Clash of Expectations and Statistics. NBER Workshop on AI and Economics, 2018.
M. Purdy; P. Daugherty. How AI Boosts industry profits and innovation, Accenture, 2017.
CB Insights. Top AI Trends to watch in 2018, pp. 1-2, 2018.
Boston Consulting Group & MIT Sloan Management Review. Reshaping Business with Artificial Intelligence, 2017.
A. Ovanessoff; E. Plastino. Una explosión de Productividad. Integración y Comercio 44:29-47, 2018.
G. Beliz. Las cinco revoluciones de la inteligencia artificial en America Latina. Integración y Comercio, 8-15, 2018.
P. Aghion; B.F. Jones; C.I. Jones. Artificial intelligence and economic growth (No. w23928), National Bureau of Economic Research, 2017.
J. Prokopenko. La gestión de la productividad. Manual practico, Ginebra: Organización Internacional del Trabajo, 1989.
K. Schwab. The Fourth Industrial Revolution: what it means, how to respond. World Economic Forum. Enero 2016.
A. I. Basco, G. Beliz, D. Coatz and P. Garnero, Industria 4.0 Fabricando El Futuro, Buenos Aires: Banco Interamericano de Desarrollo, 2018.
S. Ramaswamy; H. Vin. Getting Smarter by the Day: How AI is Elevating the Performance of Global Companies. IT Services Business Solutions Consulting, 2017.
V. Mohammadi; S. Minaei. Artificial Intelligence in the Production Process. Engineering Tools in the Beverage Industry, Woodhead Publishing, 27-63, 2019.
Real Academia Española, Diccionario de la Real Academia Española, 2018.
R. Solow, Technical change and the aggregate production function, The Review of Economics and Statistics, 39(3):312-320, 1957.
M. Purdy; P. Daugherty. Why Artificial Intelligence is the future of growth, Accenture, 2016.
R. Berger, Artificial Intelligence - A Strategy for European Startups. Recomendations for policy makers, Asgard – Human Venture Capital, Berlin, 2018.
M. J. Farrel, The Measurement of Productive Efficiency, Journal of the Royal Statistical Society. SeriesA (General), 120(3): 253-290, 1957.
V. Coll; O.M. Blasco. Evaluación de la eficiencia mediante el análisis envolvente de datos, Edición Electrónica Eumet.Net, 2006.
W. Cooper; L. M. Seiford; J. Zhu. Data Envelopment Analysis. Handbook on Data Envelopment Analysis. International Series in Operations Research & Management Science, serie 71, 573 pages, Boston: Springer, 2004.
A. Charnes, W. W. Cooper and E. Rhodes, Evaluating program and managerial efficiency: an application of data envelopment analysis to program follow through, Management science, 27(6):668-697, 1981.
A. Estevadeordal; G. Beliz; E. Estevez y otros. Algoritmolandia: inteligencia artificial para una integración predictiva e inclusiva de América Latina. Revista Integración y Comercio, BID, 22(44), 2018.
Organización Mundial de la Propiedad Intelectual (OMPI). Sobre el Índice Mundial de Innovación.Julio 2018.
J. Martínez. El PIB (per cápita) como indicador de sostenibilidad. Boletín de Estudios Economicos, 65(200):283-308, 2010.
A. Vashistha, Transformando los Servicios Globales, Integración y Comercio 44: 83-97, 2018.
D. Aguirre. La revolución, aporte y desarrollo que ha generado la inteligencia artificial en Chile. Pwc PricewaterhouseCoopers International, Febrero 2018.
S. Ramaswamy, H. Vin, Getting Smarter by the Sector: How 13 Global Industries Use Artificial Intelligence, Tata Consultancy Services, 2017.
B. S. Ltd, Frontier Analyst Data Envelopment Analysis Software, 2018.
A. M. Ravelo, S. C. de la Fe. La producción científica en Inteligencia Artificial. Ciencias de la Información, 47(2):25-32, 2016.
D. Oude Kote. Amsterdam leading the way in artificial intelligence, Artificial Intelligence for growth, Iamsterdam septiembre 2017.
D. Oude Kote. Amsterdam AI startups to keep an eye on in 2017.Iamsterdam septiembre 2017.
European Comission. High-Level Expert Group on Artificial Intelligence. Robotics and Artificial Intelligence.
A. Penero. Por qué la Inteligencia Artificial marcará una nueva era para la humanidad, Microsoft News, 2018.
M.Lundin; S.Eriksson. Artificial Intelligence in Japan (R&D, Market and Industry Analysis). EU-JAPAN Centre For Industrial Cooperation. 39 pages, 2016.
Published
How to Cite
Issue
Section
Copyright (c) 2019 Carla Yohana Fajardo de Andara
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
The opinions expressed by the authors do not necessarily reflect the position of the publisher of the publication or of UCLA. The total or partial reproduction of the texts published here is authorized, as long as the complete source and the electronic address of this journal are cited.
The authors fully retain the rights to their works, giving the journal the right to be the first publication where the article is presented. The authors have the right to use their articles for any purpose as long as it is done for non-profit. Authors are recommended to disseminate their articles in the final version, after publication in this journal, in the electronic media of the institutions to which they are affiliated or personal digital media.