Quasar luminosity function: a point processes approach

Authors

  • Rafael González De Gouveia Universidad Centroccidental Lisandro Alvarado, Venezuela
  • Abelardo Monsalve Cobis Universidad Centroccidental Lisandro Alvarado, Venezuela
  • Katherine Vieira Villarreal Centro de Investigaciones de Astronomía. Venezuela

Keywords:

Point process, active galactic nucleus, non-homogeneus Poisson process

Abstract

The quasar luminosity function measures the number of quasars per cubic megaparsec and absolute magnitude. It is one of the most important tools for studying the active galactic nucleus population and how they have evolved in time. Our investigation estimates this function through a probabilistic approach. We model the observed density of quasars using a bidimensional non-homogeneous Poisson Process in the space of absolute magnitude times redshift. A series of adjustable parametrized models are tested and we use maximum likelihood and the Bayesian Information Criteria (BIC) to select the best model, from wich the corresponding quasar luminosity function is obtained. Finally a residual analysis is made to study the goodness of fit.

Downloads

Download data is not yet available.

Author Biographies

Rafael González De Gouveia, Universidad Centroccidental Lisandro Alvarado, Venezuela

Licenciado en Matemática. Correo: afamateven@gmail.com

Abelardo Monsalve Cobis, Universidad Centroccidental Lisandro Alvarado, Venezuela

Doctor en Estadística e Investigación de Operaciones. Profesor adscrito al Dpto de Investigación de Operaciones y Estadística en la Universidad Centroccidental Lisandro Alvarado, Venezuela. Correo: amonsalve@ucla.edu.ve

 

Katherine Vieira Villarreal, Centro de Investigaciones de Astronomía. Venezuela

PHD en Astronomia.

Correo: Kvieira@cida.gob.ve

References

Davison, A., y Gigli, A. (1989). Deviance residuals and normal scores plots. Biometrika, vol. 76, No 2, pp. 211-221.
Freedman, R., y Kaufmann, W. J. (2007). Universe (Octava ed.).W. H. Freeman.
Grimmett, G., y Stirzaker, D. (2001). Probability and random processes (Tercera ed.). Oxford.
Hogg, D. W. (1999, may). Distance measures in cosmology. ArXiv Astrophysics e-prints.
Hogg, D. W., Baldry, I. K., Blanton, M. R., y Eisenstein, D. J. (2002, oct). The K correction. ArXiv Astrophysics e-prints.
Hugeback, A. (2007). Point process models for astronomy quasars, coronal mass ejections, and solar flares (Tesis Doctoral no publicada). University of Chicago.
Richards, G. T., Fan, X., Newberg, H. J., Strauss, M. A., Berk, D. E. V., Schneider, D. P.,… York, D. G. (2002). Spectroscopic target selection in the sloan digital sky survey the quasar sample. The Astronomical Journal , vol. 123, No. 6, pp. 2945-2975.
Richards, G. T., Strauss, M. A., Fan, X., Hall, P. B., Jester, S.,Schneider, D. P., . . . Snedden, S. A. (2006). The sloan digital sky survey quasar survey: Quasar luminosity function from data release 3. The Astronomical Journal, vol. 131, No 6, pp. 2766-2787.
Ross, S. M. (2006). Introduction to probability models (Novena ed.). Academic Press, Inc.
Wolf, C., Wisotzki, L., Borch, A., Dye, S., Kleinheinrich, M., y Meisenheimer, K. (2003). The evolution of faint AGN between z_1 and z_5 from the COMBO-17 survey. Journal of Astronomy & Astrophysics, vol. 408, pp. 499-514.
York, D. G., Adelman, J., Anderson, J., John E., Anderson, S. F., Annis, J., Bahcall, N. A., . . . Yasuda, N. (2000). The sloan digital sky survey technical summary. The Astronomical Journal , vol. 120, No 3. pp. 1579-1587.
Yu, Q., y Tremaine, S. (2002). Observational constraints on growth of massive black holes. Royal Astronomical Society, vol. 335, pp. 965-976.

Published

2018-06-04

How to Cite

[1]
R. González De Gouveia, A. Monsalve Cobis, and K. Vieira Villarreal, “Quasar luminosity function: a point processes approach”, Publ.Cienc.Tecnol, vol. 9, no. 2, pp. 105-122, Jun. 2018.

Issue

Section

Research Article