Forecasting the yield of a 'Valencia' orange´s crop, by means of a generalized-regression neural networks
Keywords:
Citrus sinensis, yield, foliar composition, compositional nutrient diagnosis systemAbstract
The yield of a given crop is the result of a multiplicity of variables whose complex interactions make its prediction difficult to achieve by regular means. Generalized regression artificial neural networks represent a promising alternative for such a task, due to its ability to model non-linear relationships, without the need of knowing its explicit nature. The present work aimed at assessing such approximation for predicting the potential yield of a crop of ‘Valencia’ orange (Citrus sinensis L. Osbeck), using the concentration of nitrogen, phosphorus, potassium, calcium, and magnesium in the foliar tissue as predicting variables. Special emphasis was placed in the mathematical treatment of the input/output data, using conventional techniques (normalization, standardization, and principal components) as well as other less common (row-centered log ratios, and individual and global nutritional indices from the Compositional Nutrient Diagnosis System). The results showed that, among the ones studied, the individual nutrient indices/normalized yield combination (Prediction error= 0.98 kg·tree-1), and the unrotated principal components/normalized yield combination (Prediction error= 0.51 kg·tree-1) resulted in the development of the neural networks with the highest yield prediction capabilities, as evidenced by the previously indicated prediction errors.
Downloads
References
Arizaleta, M., Rodríguez, O., Rodríguez, V. (2002). Relación de los índices DRIS, índices de balance de nutrientes, contenido foliar de nutrientes y el rendimiento del cafeto en Venezuela. Bioagro. Vol. 14, pp 153-159.
Asuero, A. G., Sayago, A., González, A. G. (2006). The correlation coefficient: an overview. Ccrit. Rev. Anal. Chem. Vol. 36, pp 41-59.
Ávila G. de Hernández, R. M., Rodríguez Pérez, V., Hernández Caraballo, E. A. (2012). Predicción del rendimiento de un cultivo de plátano mediante redes neuronales artificiales de regresión generalizada. Publ. Cien. Tec. Vol. 6, pp 31-40.
Bauer, M. M. (1995). Generalized regression neural network for technical use. Master's Thesis, University of Wisonsin-Madison, USA.
Elisseeff, A., Pontil, M. (2002). Leave-one-out error and stability of learning algorithms with applications. J. Mach. Learn. Reas. Vol 1, pp 6-21.
Fornaciari, M., Orlandi, F., Romano, B. (2005) Yield forecasting for olive trees: a new approach in a historical series (Umbria, Central Italy). Agron. J. Vol. 97, pp 1537-1542.
Food and Agriculture Organization (2008). Statistic Database (FAOStat) [En línea]. Disponible en: (Fecha de último acceso: Abril 13, 2014)
Hernández-Caraballo, E. A., Rivas, G., Ávila de Hernández, R. M. (2005). Evaluation of a generalized regression artificial neural network for extending cadmium´s working calibration range in graphite furnace atomic absorption spectrometry. Anal. Bioanal. Chem. Vol. 381, pp 788-794.
Hernández-Caraballo, E. A., Rodríguez-Rodríguez, O., Rodríguez-Pérez, V. (2009). Corrigendum to “Evaluation of the Boltzmann equation as an alternative model in the selection of the high-yield subsample within the framework of the compositional nutrient diagnosis system”. Environ. Exp. Bot. Vol. 65, pp 91.
Jackson, J. E. (1991). A user´s guide to principal components. Wiley Series in Probability and Mathematical Statistics. USA.
Kitchen, N. R., Drummond, S. T., Lund, E. D., Sudduth, K. A., Buchleiter, G. W. (2003). Soil electrical conductivity and topography related to yield for three contrasting coil-crop systems. Agron. J. Vol. 95, pp 483-495.
Lobell, D. B., Burke, M. B. (2010). On the use of statistical models to predict crop yield responses to climate change. Agricult. For. Meteo. Vol. 150, pp 1443-1452.
Matsumura, K., Gaitan, C. F., Sugimoto, K., Cannon, A. J., Hsieh, W. (2015). Maize yield forecasting by linear regression and artificial neural networks in Jilin, China. J. Agric. Sci. Vol 153, pp 399-410.
Mourtzinis, S., Arriaga, F. J., Balkcom, K. S., Ortiz, B. V. (2013). Corn grain and stover yield prediction at R1 growth stage. Agron. J. Vol 105, pp 1045-1050.
Naderloo, L., Alimardani, R., Omid, M., Sarmadian, F., Javadikia, P., Torabi, M. Y., Alimardani, F. (2012).
Application of ANFIS to predict crop yield based on different energy inputs. Measurements Vol 45, pp. 1406-1413.
Pahlavan, R., Omid, M., Akram, A. (2012). Energy input-output analysis and application of artificial neural networks for prediting greenhouse basil production. Energy Vol. 37, pp 171-176.
Parent, L. E., Dafir, M. (1992). A theoretical concepto of compositional nutrient diagnosis. J. Am. Soc. Hort. Sci. Vol. 117, pp 239-242.
Raîche, W., Riopel, M., Blais, J. -G. (2006). Non graphical solutions for the Cattell´s scree test. Trabajo presentado en el International Meeting of the Psychometric Society, Montréal, Junio 16, 2006.
Rodríguez, O., Rojas, G. E., Sumner, M. (1997). Valencia orange DRIS norms for Venezuela. Commun. Soil Sci. Plant Anal. Vol. 28, pp 1461-1468.
Salazar, M. R., , López, C. I. Rojano, A. A. Schmidt, U., Dannehl, D. (2015). Tomato Yield Prediction in a Semi-Closed Greenhouse. Acta Hort. Vol. 1107, pp 263-269.
Wallace, A., Wallace, G. A. (1993). 10. Limiting factors, high yields, and law of the maximum. En: Janick, J. (Editor). Horticultural Reviews. Vol. 15, pp 409-448. John Wiley & Sons, Inc., USA.
Zupan, J., Gasteiger, J. (1999). Neural networks in chemistry and drug design. 2nd Ed. Wiley-VCH, Weinheim.
Published
How to Cite
Issue
Section
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
The opinions expressed by the authors do not necessarily reflect the position of the publisher of the publication or of UCLA. The total or partial reproduction of the texts published here is authorized, as long as the complete source and the electronic address of this journal are cited.
The authors fully retain the rights to their works, giving the journal the right to be the first publication where the article is presented. The authors have the right to use their articles for any purpose as long as it is done for non-profit. Authors are recommended to disseminate their articles in the final version, after publication in this journal, in the electronic media of the institutions to which they are affiliated or personal digital media.