Simulation of the behavior of different loads in connections of self-supporting flat roof connections with side beams using finite elements

Authors

DOI:

https://doi.org/10.5281/zenodo.6613718

Keywords:

simulation software, fixing bracket, flat self-supporting roof, finite elements

Abstract

The different alternatives used in the construction industry make that in the structural analysis and design several tools are used to know the correct behavior of the structures under different load states. Therefore, a study of the behavior of self-supporting flat roofs and their connection with lateral beams is presented by applying the finite element method within a linear analysis with the help of ANSYS Workbench software. For this purpose, an IMAP-800 section was used, forming roofs with spans of 10, 20, 30 and 40 m, complementing the analysis with lattice-type beams and columns. For the fastening support, a plate with thicknesses from 4 to 12 mm was used, to compare with national and international design guidelines, such as thickness, slope, maximum span and the geometry of the fastening support. Maximum stresses were observed near the fixing brackets, while maximum deformations took place at the ends of the roof. By setting new parameters to save the corresponding spans, it showed an increase in the roof weight of about 5% in relation to the design guidelines used.

Downloads

Download data is not yet available.

Author Biographies

José Luis Pilamunga Guallpa, Universidad Politécnica Salesiana, Ecuador

Ingeniero Civil. Universidad Politécnica Salesiana, Ecuador.

https://scholar.google.com/citations?user=Fppma_AAAAAJ&hl=es

David Patricio Guerrero Cuasapaz, Universidad Politécnica Salesiana, Ecuador

Civil engineer. Master in Structures. Salesian Polytechnic University, Quito-Ecuador. Research Professor Civil Engineering Career, Salesian Polytechnic University, Quito-Ecuador. Email:dguerrero@ups.edu.ec  ORCID: https://orcid.org/0000-0002-8547-906X

References

Telaport. Manual técnico IMAP-850, Pernambuco: Telaport coberturas metálicas, 2004.

J. Fernández. Cubiertas planas. Madrid: Tectónica, 1998.

INN. Norma Chilena NCh 1079. Arquitectura y construcción. Zonificación climático habitacional para Chile y recomendaciones para el diseño arquitectónico. Santiago, Chile: Instituto Nacional de Normalización, 1977.

INEN. Norma Técnica Ecuatoriana NTE INEN 2492. Láminas de acero recubiertas con zinc (galvanizadas) o Recubiertas con aleación hierro zinc (galvano-recocido) mediante procesos de inmersión en caliente. Quito, Ecuador: Instituto Ecuatoriano de Normalización, 2009.

ASTM. ASTM A 653 Standard specification for Steel sheet, zinc-coated (galvanized) or zinc-iron alloy-coated (galvannealed) by the hop-dip process. Pennsylvania, United States: American Society for Testing and Materials, 2009.

ABNT. NBR 7008 Chapas e bobinas de aço revestidas com cinco ou com liga cinco-ferro pelo processo contínuo de imersão a quente. Rio de Janeiro, Brasil: Associação Brasileira de Normas Técnicas, 2003.

C. Zienkiewicz; R. Taylor. El método de los elementos finitos. Barcelona: McGraw-Hill, 1994.

ANSYS Workbench 19.0. Mechanical help, 2019.

H. Lee. Finite element simulations with ANSYS Workbench 2019. Kansas: SDC Publications, 2019.

C. Páez; D. Guerrero. “Cubiertas autoportantes circulares aplicando el método de elementos finitos”, Gaceta Técnica, vol 23, no 1, pp.72-91, 2022. https://doi.org/10.51372/gacetatecnica231.6

Dipac. Catálogo general de productos, Quito: Dipac productos de acero, 2020.

Producto of computers & structures inc. Getting started with SAP2000, 2020.

Conacero. Cubiertas autoportantes manual, Quito: Aceros y Afines Conacero S.A., 2006.

Acoport telhas autoportantes. Dado técnicos. http://acoport.com.br/telhas-autoportantes/dados-tecnicos/

D. Guerrero; M. Guerrón; J. Pilamunga; C. Páez; N. López. “Analysis of the structural behavior of flat and circular self-supporting roof using finite elements”, Revista de la Universidad de Zulia, vol 13, no 36, 2022. https://produccioncientificaluz.org/index.php/rluz/article/view/37554

Zhongcansteel. Cotización Proforma Galvanized Steel Coild, Shandong: Zhongcansteel News Material, 2020.

Acoport telhas autoportantes (10 de enero de 2021). Imágenes de soportes de fijación. https://www.facebook.com/acoport/photos/2521518717965566

J. McCormac. Diseño de estructuras de acero. México: Alfaomega, 2012.

AISC. ANSI/AISC 360-16 Especificación para construcciones de acero. Chicago, Estados Unidos: Instituto Americano de la Construcción en Acero, 2016.

AWS. AWS A5.18 Specification for Carbon Steel Electrodes. Miami, United States: American Welding Society, 2005.

NEC. NEC-SE-CG. Cargas (no sísmicas). Quito, Ecuador: Norma Ecuatoriana de la Construcción, 2015.

NEC. NEC-SE-DS. Peligro sísmico diseño sismo resistente. Quito, Ecuador: Norma Ecuatoriana de la Construcción, 2015.

D. Loachamin; A. Freire; D. Guerrero; M. Guerrón. “Análisis técnico-económico de naves industriales mediante interpolación no lineal de Lagrange”, Revista Técnica de la Facultad de Ingeniería. Universidad del Zulia, 44(2), 102-116, 2021. http://doi.org/10.22209/rt.v44n2a05

F. Crisafulli. Diseño sismorresistente de construcciones de acero. Mendoza: Asociación Latinoamericana del Acero, 2018.

ASCE. ASCE/SEI 7-16. Minimum design loads and associated criteria for building and other structures. Virginia, United States: American Society of Civil Engineers, 2016.

V. Capa, Diseño de conexiones soldadas. Tesis de grado, Universidad Politécnica Nacional, 2009.

Published

2022-06-06

How to Cite

[1]
J. L. Pilamunga Guallpa and D. P. Guerrero Cuasapaz, “Simulation of the behavior of different loads in connections of self-supporting flat roof connections with side beams using finite elements”, Publ.Cienc.Tecnol, vol. 15, no. 2, pp. 76-94, Jun. 2022.

Issue

Section

Technical Report