Challenge of polyhydroxyalkanoates as a solution to the problem of single-use plastics
DOI:
https://doi.org/10.13140/RG.2.2.30750.25923Keywords:
biopolymers, bioplastics, PHAs, bacterial polymersAbstract
Polyhydroxyalkanoates (PHAs) are biopolymers of bacterial origin that present varieties of applications, given their characteristics of bioabsorbability, hydrophobicity, biocompatibility and biodegradability. Its production and commercialization at present is limited, due to the fact that there are variables in its production process that must be optimized, so that it is an economically attractive process. In this sense, a bibliographic review was carried out based on the consultation of indexed scientific articles, with the purpose of describing the PHAs, exposing the existing classifications, properties, main applications, proposed stages in the manufacturing process and related variables, so that reduce associated manufacturing costs. It was known that the selection of the substrate, in addition to the microorganisms used in microbial synthesis, are one of the most important stages in the biomaterial manufacturing process, since the manufacturing stages and costs associated with the process depend on this.
Downloads
References
Statista. Producción de plástico a nivel mundial de 1950 a 2019, 2021, https://es.statista.com/estadisticas/636183/produccion-mundial-de-plastico/
Y. Chen, A. Kumar Awasthi, F. Wei, Q. Tan, J. Li. Single-use plastics: Production, usage, disposal, and adverse impacts, Science of The Total Environment, 752:141772, 2021. https://doi.org/10.1016/j.scitotenv.2020.141772
R. Geyer; J. R. Jambeck; K. Lavender Law. Production, use, and fate of all plastics ever made, Science Advances. 3(7): e1700782, 2017. Disponible: https://doi.org/10.1126/sciadv.1700782
J. Hansen; J. Melchiorsen; N. Ciacotich; L. Gram; E. Sonnenschein. Effect of polymer type on the colonization of plastic pellets by marine bacteria, FEMS Microbiol. Lett. 368(5): 1-9, 2021. https://doi.org/10.1093/femsle/fnab026
A. Sánchez. Antiplastic, Trabajo final de grado. Universidad Politécnica de Valencia. España. 2019. https://riunet.upv.es/handle/10251/148169
M. Jaén; P. Esteve; I. Banos. Los futuros maestros ante el problema de la contaminación de los mares por plásticos y el consumo, Rev. Eureka sobre Enseñanza y Divulg. las Ciencias, 16(1): 1–17, 2019. https://doi.org/10.25267/RevEurekaensendivulgcienc.2019.v16.i1.1501
National Geograpic. 20 datos sobre el problema del plástico en el mundo, 2020. https://www.nationalgeographic.com.es/mundo-ng/20-datos-sobre-problema-plastico-mundo_15282
S.K. Bhatia; S.B. Otari; J-M. Jeon; R. Gurav; Y-K. Choi; R.K. Bhatia; A. Pugazhendhi; V. Kumar; J.R. Banu; J-J. Yoon; K-Y. Choi; Y-H. Yang. Biowaste-to-bioplastic (polyhydroxyalkanoates): Conversion technologies, strategies, challenges, and perspective, Bioresour. Technol., 326:124733, 2021. https://doi.org/10.1016/j.biortech.2021.124733
G. Madhusoodanan; S. Selvaraj; S. Kuthethur; R. Hariharapura; D. Mysore. Steering of β oxidation intermediates to polyhydroxyalkanoate copolymer biosynthesis by fatty acids and inhibitors using Taguchi design, Int. J. Environ. Sci. Technol., 17: 2853–2864, 2020. https://doi.org/10.1007/s13762-020- 02700-5
M. Koller; R. Bona; G. Braunegg; C. Hermann; P. Horvat; M. Kroutil; J. Martinz; J. Neto; L. Pereira; P. Varila. Production of polyhydroxyalkanoates from agricultural waste and surplus materials, Biomacromolecules, 6(2): 561–565, 2005. https://doi.org/10.1021/bm049478b
S. Philip; T. Keshavarz; I. Roy. Polyhydroxyalkanoates: Biodegradable polymers with a range of applications, Journal of Chemical Technology and Biotechnology, 82(3): 233–247, 2007. https://doi.org/10.1002/jctb.1667
J.C. Lan; C.Y. Yeh; C.C. Wang; Y.H. Yang; H.S. Wu. Partition separation and characterization of the polyhydroxyalkanoates synthase produced from recombinant Escherichia coli using an aqueous two-phase system, J. Biosci. Bioeng., 116(4): 499–505, 2013. https://doi.org/10.1016/j.jbiosc.2013.04.010
N. Khan; N. Jamil. Biosynthesis of poly-3-hydroxybutyrate by Rhodococcus pyridinivorans using unrelated carbon sources, Adv. Life Sci., 8(2): 128–132, 2021. http://www.als-journal.com/826-21/
L. Kaur; R. Khajuria; L. Parihar; G.D. Singh. Polyhydroxyalkanoates: Biosynthesis to commercial production- A review, J. Microbiol. Biotechnol. Food Sci., 6(4): 1098–1106, 2017. Disponible: https://doi.org/10.15414/jmbfs.2017.6.4.1098-1106
K. Sudesh; H. Abe; Y. Doi. Synthesis, structure and properties of polyhydroxyalkanoates: Biological polyesters, Progress in Polymer Science, 25(10): 1503–1555, 2000. https://doi.org/10.1016/S0079-6700(00)00035-6
H.S. Villada; H.A. Acosta; R.J. Velasco. Biopolímeros naturales usados en empaques biodegradables, Temas agrarios, 12(2): 5-13, 2007. https://dialnet.unirioja.es/descarga/articulo/5002436.pdf
S. Sivakanthan; S. Rajendran; A. Gamage; T. Madhujith; S. Mani. Antioxidant and antimicrobial applications of biopolymers: A review, Food Res. Int., 136: 109327, 2020. https://doi.org/10.1016/j.foodres.2020.109327
Y. González; J. Meza; O. González; J. Córdova. Síntesis y biodegradación de polihidroxialcanoatos: Plásticos de origen microbiano, Rev. Int. Contam. Ambient. 29(1), 77–115, 2013. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0188-49992013000100007
E. Martínez; C. Saavedra; L. Palacios; O. Tovar; G. Roja. Identificación molecular y bioquímica de una cepa productora de Polihidroxialcanoatos (PHAs) y evaluación de su producción bajo distintas fuentes de carbono. IV Simposio Nacional de Ciencias Farmacéuticas y Biomedicina II Simposio Nacional de Microbiología Aplicada. Pág 24, México, 2018. https://rcfb.uanl.mx/index.php/rcfb/article/view/94/90
Y.F. Tsang; V. Kumar; P. Samadar; Y. Yang; J. Lee; Y.S. Ok; H. Song; K.H. Kim; E.E. Kwon; Y.J. Jeon. Production of bioplastic through food waste valorization, Environ. Int., 127: 625–644, 2019. https://doi.org/10.1016/j.envint.2019.03.076
B.L. López. Optimización de la producción de polihidroxialcanoato (PHA) por brevibacterium halotolerans empleando suero de leche derivado de la producción de queso como sustrato. Trabajo de grado para optar al título de Maestría en Ciencias con orientación en Microbiología Aplicada. Universidad Autónoma de Nuevo León. México. 2017. http://eprints.uanl.mx/16032/
A.C. Lemos; A. Mina. Polihidroxialcanoatos (PHA’s) producidos por bacterias y su posible aplicación a nivel industrial, Informador Técnico, 79(1):83-101, 2015. http://revistas.sena.edu.co/index.php/inf_tec/article/view/139
S. Misra; S. Nazhat; S. Valappil; M. Moshrefi-Torbati; R. Wood; I. Roy; A. Boccaccini.Fabrication and Characterization of Biodegradable Poly(3-hydroxybutyrate) Composite Containing Bioglass, Biomacromolecules, 8(7): 2112-2119, 2007. https://doi.org/10.1021/bm0701954
S. Quintanar-Gómez; A. Abreu-Corona; E. Zamudio-Pérez; G. Vargas-Hernández; A. Téllez-Jurado; J. Gracida-Rodríguez. Production of medium chain length polyhydroxyalkanoates from Cupriavidus necator with beeswax hydrolyzates as carbon source, Contaminación ambiental, 34(3): 467-474, 2018. https://doi.org/10.20937/rica.2018.34.03.09
R. Tarrahi; Z. Fathi; Ö. Seydibeyoğlu; E. Doustkhah; A. Khataee. Polyhydroxyalkanoates (PHA): From production to nanoarchitecture. Int. J. Biol. Macromol., 146(1): 596–619, 2020. https://doi.org/10.1016/j.ijbiomac.2019.12.181
H. Pakalapati; C. Chang; P.L. Show; S.K. Arumugasamy; J.C.W. Lan. Development of polyhydroxyalkanoates production from waste feedstocks and applications, J. Biosci. Bioeng. 126(3): 282– 292, 2018. https://doi.org/10.1016/j.jbiosc.2018.03.016
N. Israni; S. Shivakumar. Polyhydroxyalkanoates in packaging. In V. Kalia (eds) Biotechnological Applications of Polyhydroxyalkanoates, Singapore, 363-388, 2019, Springer International Publishing. https://doi.org/10.1007/978-981-13-3759-8_14
R.A. Ilyas; S.M. Sapuan; A. Kadier; M.S. Kalil; R. Ibrahim; M.S.N. Atikah; N.M. Nurazzi; A. Nazrin; C.H. Lee, M.N. Faiz Norrrahim; N.H. Sari; E. Syafri; H. Abral; L. Jasmani; M.I.J. Ibrahim. Properties and Characterization of PLA, PHA, and other types of biopolymer composites. In: Faris M. Al-Oqla, S.M. Sapuan (eds) Advanced Processing, Properties, and Applications of Starch and Other Bio-Based Polymers, 111-138, 2020 https://doi.org/10.1016/B978-0-12-819661-8.00008-1
R. Calero. Obtención de polihidroxialcanoatos (PHA) a partir de cultivos mixtos microbianos usando efluentes ricos en ácidos grasos volátiles como sustrato, Revista Científica y Tecnológica UPSE, 2(1), 2014. https://doi.org/10.26423/rctu.v2i1.36
A. Dutt Tripathi; V. Paul, A. Agarwal, R. Sharma, F. Hashempour-Baltork, L. Rashidi, K. Khosravi Darani. Production of polyhydroxyalkanoates using dairy processing waste – A review, Bioresource Technology, 326:124735, 2021. https://doi.org/10.1016/j.biortech.2021.124735
D. Montoya Castaño; N. Moreno Sarmiento; A. Espinoza Hernández; G. Buitrago Hurtado; F. Aristizábal Gutiérrez; M. Bernal Morales; I.A. García Romero. Grupo de bioprocesos y bioprospección, Revista Colombiana de Biotecnología. 1(1): 14-19, 2017. https://www.redalyc.org/pdf/776/77653191003.pdf
L. De Donno; S. Moreno; E. Rene. Polyhydroxyalkanoate (PHA) production via resource recovery from industrial waste streams: A review of techniques and perspectives, Bioresour. Technol, 331:124985, 2021. https://doi.org/10.1016/j.biortech.2021.124985
C. García-Reyna; V. Almaguer; E. Martínez; G. Rojas; E. Aleman. Efecto de diferentes condiciones de cultivo en la producción y rendimiento de polímeros biodegradables por una cepa nativa del genero Bacillus. VI Simposio Nacional de Ciencias Farmacéuticas y Biomedicina IV Simposio Nacional de Microbiología Aplicada. Pág 40-41, México, 2019. https://rcfb.uanl.mx/index.php/rcfb/article/view/247/238
D. Meng; C. Gong; R. Kumar; D. Dionysiou; Z. Huang; R. Li; Y. Liu, Y. Ji; P.Gu, X. Fan; Q.Li. Production of polyhydroxyalkanoates from propylene oxide saponification wastewater residual sludge using volatile fatty acids and bacterial community succession. Bioresour. Technol., 329:124912, 2021. https://doi.org/10.1016/j.biortech.2021.124912
L. Altamirano; E. Ramos; S. Iglesias; C. Carreño. Potencialidades de bacterias productoras de polihidroxialcanoatos (PHA) aisladas de Asparagus officinalisL, 2018. https://preprints.scielo.org/index.php/scielo/preprint/view/646/830
S. Ghosh; R. Gnaim; S. Greiserman; L. Fadeev; M. Gozin; A. Golberg. Macroalgal biomass subcritical hydrolysates for the production of polyhydroxyalkanoate (PHA) by Haloferax mediterranei, Bioresour. Technol., 271: 166–173, 2019. https://doi.org/10.1016/j.biortech.2018.09.108.
R. Gnaim; M. Polikovsky; R. Unis; J. Sheviryov; M. Gozin; A. Golberg. Marine bacteria associated with the green seaweed Ulva sp. for the production of polyhydroxyalkanoates. Bioresour. Technol. 328: 124815, 2021. https://doi.org/10.1016/j.biortech.2021.124815
P. Wang; X.T. Chen; Y.Q. Qiu; X.F. Liang; M.M. Cheng; Y.J. Wang; L.H. Ren. Production of polyhydroxyalkanoates by halotolerant bacteria with volatile fatty acids from food waste as carbon source. Biotechnology and Applied Biochemistry, 67: 307-316, 2020. https://doi.org/10.1002/bab.1848
H. Löwe; K. Hobmeier; M. Moos; A. Kremling; K. Pflüger-Grau. Photoautotrophic production of polyhydroxyalkanoates in a synthetic mixed culture of Synechococcus elongatus cscB and Pseudomonas putida cscAB, Biotechnol. Biofuels, 10: 190, 2017. https://doi.org/10.1186/s13068-017-0875-0
E. Rojas; J.L. Hoyos; S.A. Mosquera. Producción de polihidroxialcanoatos (PHAs) a partir de Ralstonia eutropha en un medio con harina de yuca como fuente de carbono, Biotecnología en el Sector Agropecuario y Agroindustrial, 14(1): 19-26, 2016. https://doi.org/10.18684/BSAA(14)19-26
J. Aravind; M. Sandhya. Optimization of Media Components for Production of Polyhydroxyalkanoates by Ralstonia eutropha Using Paddy Straw as Cheap Substrate. In: Prashanthi M., Sundaram R., Jeyaseelan A., Kaliannan T. (eds) Bioremediation and Sustainable Technologies for Cleaner Environment. Environmental Science and Engineering, 239-251, 2013 Springer, Cham. https://doi.org/10.1007/978-3-319-48439- 6_18
F. Fang; X. Run-Ze; H. Yan-Qiu; W. Su-Na; Z. Lu-Lu; D. Jin-Yun; X. Wen-Ming; C. Xueming; C. Jia-Shun. Production of polyhydroxyalkanoates and enrichment of associated microbes in bioreactors fed with rice winery wastewater at various organic loading rates. Bioresour. Technol., 292: 121978, 2019. https://doi.org/10.1016/j.biortech.2019.121978
Y. Sohn; H. T. Kim; K-A. Baritugo; H.M. Song; M.H. Ryu; K.H. Kang; S. Y. Jo; H. Kim; Y. J. Kim; J. Choi; S.K. Park; J. C. Joo; S. J. Park. Biosynthesis of polyhydroxyalkanoates from sucrose by metabolically engineered Escherichia coli strains, Int. J. Biol. Macromol., 149: 593-599, 2020. https://doi.org/10.1016/j.ijbiomac.2020.01.254
X. Yang; S. Li; X. Jia. A four-microorganism three-step fermentation process for producing medium-chain- length polyhydroxyalkanoate from starch. 3 Biotech, 10(8): 352, 2020. https://doi.org/10.1007/s13205-020-02347-6
G.Q. Chen. Industrial Production of PHA. In: Chen GQ. (eds) Plastics from Bacteria. Microbiology Monographs, vol 14, 121-132, 2010. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3- 642-03287-5_6
A.B. Pillai; H.K. Kumarapillai. Bacterial Polyhydroxyalkanoates: Recent Trends in Production and Applications. In: Shukla P. (eds) Recent advances in Applied Microbiology, 19-53, 2017. Springer, Singapore. https://doi.org/10.1007/978-981-10-5275-0_2
A. Arumugam; T.S. Anudakshaini; R. Shruthi; K. Jeyavishnu; S. Sundarra Harini; J.S. Sharad. Low-cost production of PHA using cashew apple (Anacardium occidentale L.) juice as potential substrate: optimization and characterization. Biomass Conv. Bioref. 10: 1167–1178, 2020. https://doi.org/10.1007/s13399-019-00502-5
M. Koller. A Review on Established and Emerging Fermentation Schemes for Microbial Production of Polyhydroxyalkanoate (PHA) Biopolyesters. Fermentation, 4(2):30, 2018. https://doi.org/10.3390/fermentation4020030
G.Q. Chen; X. Chen; F. Wu; J. Chen. Polyhydroxyalkanoates (PHA) toward cost competitiveness and functionality, Adv. Ind. Eng. Polym. Res. 3(1): 1–7, 2020. https://doi.org/10.1016/j.aiepr.2019.11.001
A. Singh; N. Mallick. Advances in cyanobacterial polyhydroxyalkanoates production, FEMS Microbiol. Lett., 364(20): fnx189, 2017. https://doi.org/10.1093/femsle/fnx189
J. Almagro. Aislamiento de bacterias productoras de polihidroxialcanoatos (PHAs) en aguas residuales provenientes de dos industrias lácteas. Trabajo de grado para optar al título de Ingeniería en Procesos Biotecnológicos. Universidad San Francisco de Quito, 2020. https://repositorio.usfq.edu.ec/bitstream/23000/8732/1/146089or.pdf
H. Al-Battashi; S. Al-Kindi; V.K. Gupta; N. Sivakumar. Polyhydroxyalkanoate (PHA) Production Using Volatile Fatty Acids Derived from the Anaerobic Digestion of Waste Paper, J Polym Environ, 29: 250–259, 2021. https://doi.org/10.1007/s10924-020-01870-0
S.W. Kariuki; J.W. Muthengia; M.K. Erastus; G.M. Leonard; J.M. Marangu. Characterization of composite material from the copolymerized polyphenolic matrix with treated cassava peels starch, Heliyon, 6(7): e04574, 2020. https://doi.org/10.1016/j.heliyon.2020.e04574
C. Nielsen; A. Rahman; A.U. Rehman; M.K. Walsh; C.D. Miller. Food waste conversion to microbial polyhydroxyalkanoates, Microb. Biotechnol., 10(6):1751-7915, 2017. https://doi.org/10.1111/1751-7915.12776
S. Y. Lee. Bacterial polyhydroxyalkanoates, Biotechnol. Bioeng., 49(1), 1–14, 1996. https://doi.org/10.1002/(SICI)1097-0290(19960105)49:1<1::AID-BIT1>3.0.CO;2-P
M. Mohammadi; M. A. Hassan; Y. Shirai; H. Che-Man; H. Ariffin; L.N. Yee; T. Mumtaz; M.L. Chong; L.Y. Phang, Separation and Purification of Polyhydroxyalkanoates from Newly Isolated Comamonas sp. EB172 by Simple Digestion with Sodium Hydroxide, Separation Science and Technology, 47(3): 534-541, 2012. https://doi.org/10.1080/01496395.2011.615788
R. Takahashi; N. Castilho; M. Silva; M.C. Miotto; A. Lima. Prospecting for Marine Bacteria for Polyhydroxyalkanoate Production on Low-Cost Substrates, Bioengineering (Basel, Switzerland), 4(3): 60, 2017. https://doi.org/10.3390/bioengineering4030060
P.C. Sabapathy; S. Devaraj; A. Parthiban; A. Pugazhendhi; P. Kathirvel. Aegle marmelos: A novel low cost substrate for the synthesis of polyhydroxyalkanoate by Bacillus aerophilus RSL- 7. Biocatal. Agric. Biotechnol. 18: 101021, 2019. https://doi.org/10.1016/j.bcab.2019.101021
M. Kumar; R. Rathour; R. Singha; Y. Sund; A. Pandey; E. Gnansounouc; A. Kun-Yi; D. C.W. Tsang; I. S. Thaku. Bacterial polyhydroxyalkanoates: Opportunities, challenges, and prospects, J. Clean. Prod., 263.121500, 2020. https://doi.org/10.1016/j.jclepro.2020.121500
Á. Estévez-Alonso; R. Pei; M. Loosdrecht; R. Kleerebezem; A. Werker. Scaling-up microbial community- based polyhydroxyalkanoate production: status and challenges, Bioresource Technology, 327:124790, 2021. https://doi.org/10.1016/j.biortech.2021.124790
S. Andreasi; A. Boldrin; G. Frenna; T. Astrup. An environmental and economic assessment of bioplastic from urban biowaste. The example of polyhydroxyalkanoate, Bioresour. Technol., 327: 124813, 2021. https://doi.org/10.1016/j.biortech.2021.124813
Published
How to Cite
Issue
Section
Copyright (c) 2021 Hector Zambrano Castro, Maria Antonieta Riera
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
The opinions expressed by the authors do not necessarily reflect the position of the publisher of the publication or of UCLA. The total or partial reproduction of the texts published here is authorized, as long as the complete source and the electronic address of this journal are cited.
The authors fully retain the rights to their works, giving the journal the right to be the first publication where the article is presented. The authors have the right to use their articles for any purpose as long as it is done for non-profit. Authors are recommended to disseminate their articles in the final version, after publication in this journal, in the electronic media of the institutions to which they are affiliated or personal digital media.