A review on detection and fault diagnosis in induction machines

Authors

  • Zulma Yadira Medrano Hurtado Universidad Autónoma de Baja California, México
  • Carlos Pérez Tello Universidad Autónoma de Baja California, México
  • Julio Gómez Sarduy Universidad de Cienfuegos, Cuba

Keywords:

Induction machines, type of failures, characteristics signal generated, failure detection methods, diagnosis methods

Abstract

In this work a careful review describing diferent types of failures in electricalmachines, their characteristic signals generated and diagnosis methodsis performed. Additionally a comparison of the advantages between theknown failure detection methods based on the information required for diagnosis, the occurrence and importance of failures detection, the effectiveness for anticipating a mal function or failure and the final diagnosis accuracy is also made. Particularly, this review will help to provide a straight forward update about the most recent work and research in this field. The work is mainly oriented to engineering students interested in starting the researchand study of electrical machines.

Downloads

Download data is not yet available.

Author Biography

Carlos Pérez Tello, Universidad Autónoma de Baja California, México

Instituto de Ingeniería

References

Aguado, J. (2012). Análisis de fallas en motores de inducción utilizando la corriente estatorica, diseño y construcción de prototipo basado en un microcontrolador. Available at http://www.elistas.net.

ANSI/NEMA. (2012). Mg 1-2011. motors and generators (includes errata 2012). standard published 02/14/2012 by American National Standards Institute/National Electrical Manufacturers Association.

ASA. (2009). S12.60-2010/part 1. acoustical performance criteria, design requirements, and guidelines for schools, part 2:. Relocatable Classroom Factors standard published 09/02/2009 by American National Standards of the Acoustical Society of America.

ASA. (2010). S12.60-2010/part 1. acoustical performance criteria, design requirements, and guidelines for schools, part 1:. Permanent Schools standard published 04/28/2010 by American National Standards of the Acoustical Society of America.

Bakhri, S., Ertugrul, N., Soong, W. L., & Arkan, M. (2010). Investigation of negative sequence components for stator shorted turn detection in induction motors.

Baldizzone, S., Novak, C. J., & Kar, N. C. (2012). Experimental investigations of noise and vibration in electric machines.

Bayindir, R., Sefa, I., Colak, I., & Bektas, A. (2008). Fault detection and protection of induction motors using sensors. IEEE Transactions on Energy Conversion, 23 (3), pp 734-741.

Boesing, M., & Doncker, R. W. (2012, January/Frbruary). Exploring a vibration synthesis process for the acoustic characterization of electric drives. IEEE Transactions on Industry applications., 48 (1), pp 70-78.

Boukra, T., & Lebaroud, A. (2010). Classification of induction machine faults. Systems Signals and Devices. 7th International Multi-Conference., pp 1-6.

Brown, A., David, E., & Essalihi, M. (2011). Insulation resistance measurements for machine insulation. Electrical Insulation Conference. pp 261-264. Calero Pérez, R., & Carta González, J. A. (1998). Fundamentos de mecanismos y m´aquinas para ingenieros. Ed. McGrawHill/Interamericana de España. S.A., 1. ed. ISBN: 844812099X ISBN-13: 9788448120993.

Castelli, M., & Andrade, M. (2008). Metodología de monitoreo, deteccin y diagn´ostico de fallos en motores asíncronos de inducción. Memorias URUMAN.(6), pp 1-20.

Concari, C., Franceschini, G., & Tassoni, C. (2010). A mcsa procedure to diagnose low frequency mechanical unbalances in induction machines.

Filippetti, F., Bellini, A., & Capolino, G. (2013). Condition monitoring and diagnosis of rotor faults in induction machines: State of art and future perspectives. Electrical Machines Design Control and Diagnosis. IEEE Workshop., pp 196-209.

Frosini, L., Borin, A., Girometta, L., & Venchi, G. (2011). Development of a leakage flux measurement system for condition monitoring of electrical drives.

Gnal, S., & Nehiz, . N. (2009). Induction machine condition monitoring using notch-xfiltered motor current. Mechanical Systems and Signal Processing., 23 (8), pp 2658-2670.

Grubic, S., Aller, J. M., Lu, B., & Habetler, T. G. (2008). A survey on 28 Publicaciones en Ciencias y Tecnolog´ia. Vol 8,N01, Ene-Jul 2014, pp.11-30. Medrano, Z.; Pérez, T.; G´omez, S. testing and monitoring methods for stator insulation systems of low-voltage induction machines focusing on turn insulation problems. IEEE Electrical Insulation Magazine. ISBN: 978-1- 4244-1621-9 , pp 4127-4136.

Gubric, S., Aller, J. M., Lu, B., & Habetler, T. G. (2012). A survey of testing and monitoring methods for stator insulation system in induction machines. Available at http://prof.usb.ve, pp 1-8.

Guedidi, S., Zouzou, S. E., Laala, W., Sahraoui, M., & Yahia, K. (2011). Broken bar fault diagnosis of induction motors using mcsa and neural network. diagnostics for electric machines. power electronics and drives.

Hidalgo, J. C. (2013). An´alisis de las zonas de falla de motores eléctricos. Available at http://www.termogram.com. pp 1-12.

Kathir, I., Balakrishnan, S., & Bevila, R. J. (2011). Fault analysis of induction motor. Emerging Trends in Electrical and Computer Technology. International Conference., pp 476-479.

Kia, S. H., Henao, H., & Capolino, G. (2010). Torsional vibration assessment using induction machine electromagnetic torque estimation. IEEE Transactions on Industrial Electronics., 57 (1), pp 209-219.

Kreitzer, S., Obermeyer, J., & Mistry, R. (2008). The effects of structural and localized resonances on induction motor performance. IEEE Transactions on Industry Applications., 44 (5), pp 1367-1375.

Mariun, N., Mehrjou, M. R., Marhaban, M. H., & Misron, N. (2011). An experimental study of induction motor current signature analysis techniques for incipient broken rotor bar detection.

Nandi, S., Toliyat, H. A., & Li, X. (2005). Condition monitoring and fault diagnosis of electrical motors-a review. IEEE Transactions on Energy Conversion., 20 (4), pp 719-729.

Puche, R. (2008). Nuevos métodos de diagnosis de excentricidad y otras asimetrías rotóricas en máquinas eléctricas de inducción a través del análisis de la corriente estatórica. Tesis Doctoral. Universidad Politécnica de Valencia.

Puche, R., Pons, J., Climente, V., & Pineda, M. (2004). Review diagnosis methods of induction electrical machines based Publicaciones en Ciencias y Tecnología. Vol 8,N01, Ene-Jul 2014, pp.11-30. 29 DETECTION AND FAULT DIAGNOSIS IN INDUCTION MACHINES on steady state current. Phys. Rev. D, pp1-5. Available at . Rangel, J. J., Romero, R. J., Osornio, R. A., Cabal, E., & Contreras, L. M. (2009). Novel methodology for online half-broken-bar detection on induction motors. IEEE Transactions on Instrumentation and Measurement., 58 (5), pp 1690-1698.

Sánchez, M. A., Aguilar, J. D., & Jutinico, A. L. (2012). Revisión bibliogr´afica: Implementaci´on del vector de park para la detecci´on de fallas en máquinas rotativas.

Siddique, A., Yadava, G. S., & Singh, B. (2005). A review of stator fault monitoring techniques of induction motors. IEEE Transaction on Energy Conversion., 20 (1), pp 106-114.

Sin, M. L., Soong, W. L., & Ertugrul, N. (2012). Induction machine on-line condition monitoring and fault diagnosis-a survey. Available at http://adelaide.academia.edu.

Spyropoulos, D. V., Gyftakis, K. N., Kappatou, J., & Mitronikas, E. D. (2012). The influence of the broken bar fault on the magnetic field and electromagnetic torque in 3-phase induction motors.

Tozzi, M., Cavallini, A., & Montanari, G. C. (2011). Monitoring off-line and on-line pd under impulsive voltage on induction motors-part 2: Testing*. IEEE Electrical Insulation Magazine., 27, pp 14-21.

Verucchi, C., Acosta, G. G., & Benger, F. A. (2009). A review on fault diagnosis of induction machines. Latin American App. Research., pp 113-121.

Published

2014-11-07

How to Cite

[1]
Z. Y. Medrano Hurtado, C. Pérez Tello, and J. Gómez Sarduy, “A review on detection and fault diagnosis in induction machines”, Publ.Cienc.Tecnol, vol. 8, no. 1, pp. 11-30, Nov. 2014.

Issue

Section

Research Article