Design of a Super Pressurized Double Balloon

Authors

DOI:

https://doi.org/10.5281/zenodo.6562087

Keywords:

super pressurized balloon, strength of materials, LLDPE membrane, gas permeability

Abstract

A super pressurized balloon is a sealed structure made of a thin linear low density polyethylene (LLDPE) membrane reinforced with cords, with tension calculated to counterbalance intense stresses on the film as shown in this paper. We propose a double super pressurized (DSP) balloon design, with an inner membrane inside a slightly larger one. Both membranes are connected by LLPDE films joining the cords of each balloon, creating gore-panels surrounding the internal membrane. The internal globe is filled with Hydrogen, that is inexpensive but inflammable while the external gores will be filled with nonflammable gas Helium, but very expensive. As volume of the internal globe is much larger than the volume of the exterior panels, the cost of filling this double balloon is drastically reduced, compared with traditional balloons completely filled with Helium. In the DSP balloon Hydrogen must go first through the exterior panels in order to escape, then the loss rate of Hydrogen is largely reduced, increasing the security in the use of Hydrogen filled balloons. Also, the double balloon can resist the breaking of the exterior membrane, even the rupture of the inner membrane provided they do not break in the same section.

Downloads

Download data is not yet available.

Author Biographies

Yomber José Montilla López, Universidad Técnica Estatal de Quevedo, Ecuador

Physics teacher. Magister Scientiarum in Sciences, mention Physics Mathematics. Professor assigned to the Environmental Engineering career, Faculty of Engineering Sciences, State Technical University of Quevedo, Quevedo, Ecuador. Email: ymontillal@uteq.edu.ec

Rafael Simón Torrealba Suárez , Universidad Centroccidental Lisandro Alvarado, Venezuela

Degree in physics. Ph.D. in Physics. Director of the Bachelor's program in Physics. Professor attached to the Department of Physics, Dean of Science and Technology. Central Western University Lisandro Alvarado, Barquisimeto, Lara State, Venezuela. Email: rtorre@ucla.edu.ve 

References

H. Kragh, Cosmology and controversy : the historical development of two theories of the universe. NJ, EEUU: Princeton Univ. Press„ 1999.

C. J. MacTavish, P. A. R. Ade, J. J. Bock, J. R. Bond, J. Borrill, A. Boscaleri, P. Cabella, C. R. Contaldi, B. P. Crill, P. de Bernardis, G. D. Gasperis, A. de Oliveira-Costa, G. D. Troia, G. D. Stefano, E. Hivon, A. H. Jaffe, W. C. Jones, T. S. Kisner, A. E. Lange, A. M. Lewis, S. Masi, P. D. Mauskopf, A. Melchiorri, T. E. Montroy, and P. Natoli, “Cosmological parameters from the 2003 flight of BOOMERANG,” Astrophys. J., vol. 647, pp. 799–812, 2006.

E. Komatsu, K. M. Smith, J. Dunkley, C. L. Bennett, B. Gold, G. Hinshaw, N. Jarosik, D. Larson, M. R. Nolta, L. Page, D. N. Spergel, M.Halpern,R. S. Hill, A. Kogut, M. Limon, S. S. Meyer, N. Odegard, G. S. Tucker, J. L. Weiland, E. Wollack, and E. L. Wright, “Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: are there cosmic microwave background anomalies?,” Astrophys. J. Suppl., vol. 192, p.17, 2011.

G. Manney, R. Zurek, and A. O’Neill, “On the motion of air through the stratospheric polar vortex,” Journal of the Atmospheric Sciences., vol. 51(20), pp. 2973–94, 1994.

P.W. Gorham, “Particle Astrophysics in NASA´s Long Duration Balloon Program,” Nucl. Phys. B Proc. Suppl., vol. 243-244, pp. 231–238, 2013.

P. Barthol and A. Gandorfer and S. K. Solanki and M. Schussler and B. Chares andW. Curdt andW. Deutsch and A. Feller and D. Germerott and B. Grauf and K. Heerlein and J. Hirzberger and M. Kolleck and R. Meller and R. Muller and T. L. Riethmuller and G.Tomasch and M. Knolker and B. W. Lites and G. Card and D. Elmore and J. Fox and A. Lecinski and P. Nelson and R. Summers and A. Watt and V Martinez Pillet andJ. A. Bonet and W. Schmidt and T. Berkefeld and A. M. Title and V. Domingo and J. L. Gasent Blesa and J. C. del Toro Iniesta and A. Lopez Jimenez and A. Alvarez-Herrero and L. Sabau-Graziati and C Widani and P. Haberler and K. Hartel and D. Kampf and T. Levin and I. Perez Grande and A. Sanz-Andres and E. Schmidt, “The Sunrise Mission,” Solar Phys., vol. 268, p. 1, 2011.

L. J. Romualdez, S. J. Benton, A. M. Brown, P. Clark, C. J. Damaren, T. Eifer, A. A. Fraiser, M. N. Galloway, J. W. Hartley, M. Jauzac, W. C. Jones, L. Li, T. T. Luu, R. J. Massey, J. Mccleary, C. B. Netterfield, S. Redmond, J. D. Rhodes, J. Schmoll, and S. Tam, “Overview, design, and flight results from SuperBIT: a high-resolution, wide-field, visible-to-near-UV balloon-borne astronomical telescope,” in Proc. SPIE. 10702 Ground-based and Airborne Instrumentation for Astronomy VII, (Austin Texas, USA), pp. 107–120, 2018.

Jet Propulsion Laboratory, “Astrhos,” 2022. Last accessed 2022.

B. Rabii, C. D.Winant, M. E. Abroe, P. Ade, A. Balbi, J. J. Bock, J. Borrill, A. Boscaleri, P. de Bernardis, J. S. Collins, P. G. Ferreira, S. Hanany, V. V. Hristov, A. H. Jaffe, B. R. Johnson, A. E. Lange, A. T. Lee, C. B. Netterfield, E. Pascale, P. L. Richards, G. F. Smoot, R. Stompor, and J. H. P. Wu, “MAXIMA: A balloon - borne cosmic microwave background anisotropy experiment,” Rev. Sci. Instrum., vol. 77, p. 071101, 2006.

N. McGreevy, “For 125,000, you could ride a balloon into the stratosphere,” 2020. Last accessed 16 March 2022.

T. W. Lambe and R. V. Whitman, Mecanica de suelos. Mexico DF, Mexico: Editorial Limusa, 2004.

Glenn Research Center, “Earth atmosphere model.” Last accessed 16 March 2022.

L. Landau and E. Lipshitz, Teoría de la Elasticidad: Curso de Física Teórica, Vol 7. Barcelona, Espana: Editorial Reverte, 1969.

M. Smith and E. Rainwater, “Optimus designs for super presure ballons,” Advances in Space Research, vol. 53 (10), pp. 1688–1693, 2004.

TOYOBO, “Pbo fiber zylon,” 2005. Last accessed 16 March 2022.

ExxonMobil, “Lldpe ll 1002yb,” 2013. Last accessed 16 March 2022.

Nasa’s Balloon Program Office, “Scientific ballons.” Last accessed 2020.

Nasa Balloon Program Office, “Earth atmosphere model.” Last accessed 2020.

M. J. Quezada, Permeabilidad de Gases en Láminas Ultradelgadas. PhD thesis, Universidad de santiago de Chile, 2013.

J. Q. B. García, Determinación de los coeficientes de solubilidad, difusión y permeabilidad de gases en polímeros mediante la técnica de decaimiento de presión. PhD thesis, Universidad Iberoamericana, 2007.

A. A. I. Balado, Efecto del Templado sobre la Permeación de Gases a través de filmes de LLDPE obtenidos por coextrusion. PhD thesis, Universitat Jaume I, 1998

.

J. P. García, Transporte Gaseoso en Membranas Poliméricas densas de LLDPE. PhD thesis, Universidad Complutense de Madrid, 2003.

ExxonMobil, “Lldpe ll 1002yb,” 2013. Last accessed 16 March 2022.

G. Arfken and H. Weber, Mathematical Methods for Physicists. NY, EEUU: Academic Press, 1995.

Published

2022-06-06

How to Cite

[1]
Y. J. Montilla López and R. S. Torrealba Suárez, “Design of a Super Pressurized Double Balloon”, Publ.Cienc.Tecnol, vol. 15, no. 2, pp. 61-73, Jun. 2022.

Issue

Section

Research Article