Solar and wind potential of Venezuela, hybrid power supply system scenarios for the Toas Island, Zulia State

Authors

DOI:

https://doi.org/10.5281/zenodo.6841805

Keywords:

Levelized cost of electricity, wind energy, photovoltaic energy, microgrid

Abstract

Electricity generation in Venezuela is dominated by fossil fuels and large-scale hydroelectric plants, predominating over other energy sources. The objective of this research is to determine the solar photovoltaic and wind potential and to propose scenarios of hybrid electric energy systems for Toas Island, Zulia State. In the first part, a documentary research on this potential was carried out, then with data obtained from solar irradiation and wind speed, through Global Solar, NASA Power and the use of the Homer application, a feasible project of a micro grid applied to Toas Island, Almirante Padilla Municipality, Zulia State, was presented.  Thus demonstrating that the photovoltaic, wind, battery and interconnection scenario is the best applicable option, with a levelized cost of electricity of 0.3 $/kWh, offering greater reliability and availability, with the possibility of transmitting surpluses to the electric grid.

Downloads

Download data is not yet available.

Author Biography

Alexis Alexander Barroso Molina, Universidad Católica Andrés Bello, Venezuela

Electrical engineer. Specialist in Power Systems, Master in Electrical Engineering. Research professor at the Center for Innovation and Development in Engineering (CIDI), Faculty of Engineering, Universidad Católica Andrés Bello, Capital District, Caracas, Venezuela.

References

M. Salas, "Sociedad, Estado y renta petrolera en Venezuela: una relación unidireccional," vol. 57, no. 2, 2016.

J. Morales, "Petróleo en México y Venezuela: Historia, Politica y Símbolo," Revista Digital A&H, vol. 7, no. 13, 2021.

L. E. Arce Clavijo, "Petróleo y planificación social en Venezuela," Universidad Nacional de Colombia., pp. 203-238, 2010.

E. Selman and R. Fornet , "Venezuela: análisis económico de un país en crisis," Centro Regional de Estrategias Económicas Sostenibles, pp. 1-15, 2014.

MPPEE, Anuario Estadístico Sector Eléctrico Venezolano, Caracas, 2014.

F. Gonzalez-Longatt, "Propuesta de una Línea de Investigación en Fuentes Alternas de Energía y Generación Distribuida," 2007. http://fglongatt.org/OLD/Articulos/A2007-01.pdf.

J. Nathwani and D. Kammen, "Affordable Energy for Humanity: A Global Movement to Support Universal Clean Energy Access," IEEE, pp. 1780-1789, 2019.

IEA, World Energy Outlook 2021, Paris: International Energy Agency, 2021.

AIE, "Trends in Photovoltaic Applications 2020," International Energy Agency, 2020.

M. Á. Caraballo Pou and J. M. García Simón, "Energías renovables y desarrollo económico. Un análisis para España y las grandes economías europeas," El Trimestre Económico, pp. 571-609, 2017.

J. Goldemberg, T. B. Johansson and A. K. &. W. R. H. Reddy, "Basic needs and much more with one kilowatt per capita," AMBIO A Journal of the Human Environment, p. 190–200, 1985.

Banco interaméricano de Desarrollo, "Documento de Marco Sectorial de Energía," BID, 2018.

Lazard, "Lazard´s Levelized Cost of Energy Analisys version 3.0, USA," 2020. https://www.lazard.com/media/451086/lazards-levelized-cost-of-energy-version-130-vf.pdf.

A. Bhide and C. Rodríguez Monroy, "Energy poverty: A special focus on energy poverty in India and renewable energy technologies," Elsevier, pp. 1057-1066, 2011.

M. Alves, R. Segurado and M. Costa, "Increasing the penetration of renewable energy sources in isolated islands through the interconnection of their power systems. The case of Pico and Faial islands, Azores," Energy, pp. 502-510, 2019.

O. Longe, L. Myeni and K. Ouahada, "Renewable Energy Solution for Electricity Access in Rural South Africa," IEEE, pp. 772-776, 2019.

M. Nurunnabi, N. Kumar, E. Hossain and H. Pota, "Size Optimization and Sensitivity Analysis of Hybrid Wind/PV Micro-Grids- A Case Study for Bangladesh," IEEE, pp. 120-140, 2019.

E. Hamatwi, C. Nyirenda and I. Davidson , "Cost Optimization and Design of a Hybrid Distributed Generation System for a DC Microgrid," IEEE, pp. 384-389, 2018.

Homer Energy, "Homer pro 3.14 user manual," 2020.

G. S. Atlas, The World Bank Grou, 2022. https://globalsolaratlas.info.

NASA, "Power Data Access Viewer v2.0.0," NASA, 08 05 2021. https://power.larc.nasa.gov/data-access-viewer/.

Maps of World. “Mapa de Venezuela, Latitud y Longitud de Venezuela,” 2021. https://espanol.mapsofworld.com/continentes/sur-america/venezuela/latitud-y-longitud-de-venezuela.html.

P. Fausto, "Estudio del desarrollo de las energías alternativas en Venezuela," ANALES Unimet, vol. 4, no. 1, pp. 147-164, 2004.

MEM, PDSEN 2005-2024, Caracas: MEM, 2004.

H. Nademi, A. Das, R. Burgos and L. Norum, "A New Circuit Performance of Modular Multilevel Inverter Suitable for Photovoltaic Conversion Plants," IEEE Journal of Emerging and Selected Topics in Power Electronics, pp.393-404, 2016.

German Agency for Technical Cooperation, NU CEPAL, "Fuentes renovables de energía en Latina y el Caribe: situación y propuestas de políticas," Repositorio digital CEPAL, 2004. https://repositorio.cepal.org/handle/11362/31904

A. López-Gonzalez, Energías Renovables en Venezuela: Experiencias y lecciones para un futuro sostenible, La cueva del Elefante, 2021.

SEIA, "Solar Industries Association," Nclud, 2021. https://www.seia.org/initiatives/siting-permitting-land-use-utility-scale-solar.

A. Barroso, " Factibilidad de Energías Alternativas en la Generación de Electricidad en la Región Insular, Estado Nueva Esparta" Tekhné, vol. 25, no. 1, pp. 9-17, 2022.

C. La Rosa and R. Andressen, "Energía eólica evaluación meteorológica de su aprovechamiento en Venezuela," Instituto de Geografía y Desarrollo Regional y de los Postgrado en Geografía, UCV, vol. 28, no. 43, 2012.

F. González Longatt, J. Serrano, M. Burgos y J. Riquelme, "Wind-resource atlas of Venezuela based on on-site anemometry observation," Renewable and Sustainable Energy Reviews, vol 39, pp. 898-911, 2014. https://www.sciencedirect.com/science/article/abs/pii/S1364032114006248

Instituto Nacional de Estadistica INE, "Censo, Resultados por Entidad Federal y Municipio del estado Zulia 2011," Caracas, 2014.

J. Espina Alvarado, Alternativa Tecnológica para la Generación de Energía Eléctrica en el Municipio Almirante Padilla, Estado Zulia, Maracaibo: URBE, 2019.

A. Naranjo, Proyecto del Sistema de Distribución Eléctrico, Caracas: Equinoccio USB, 2014.

L. Oquendo, "Colapso eléctrico y colapso gerencial en Venezuela.," Revista Venezolana de Gerencia, vol 24, no 86, pp 595-597, 2019.

MPPEE, PDSEN 2013-2019 Plan de Desarrollo del Sistema Eléctrico Nacional, 2013.

UCAB-IIES, "Informe de coyuntura Venezuela junio 2021" 2021. https://elucabista.com/wp-content/uploads/2021/06/Informe-de-coyuntura-IIES-UCAB-06-2021-21062021-VF.pdf.

OPEP, "Annual Statistical Bulletin 2021," 2021. https://asb.opec.org/ASB_Chapters.html.

Globalpetrolprices.com, Retail energy price data, https://es.globalpetrolprices.com/diesel_prices/

ONU, "Naciones Unidas Venezuela," 2022. https://venezuela.un.org/es/sdgs/7.

Westinghouse, Distribution Systems, Pennsylvania, 1965.

M. Contreras and V. Vasil, "Technical evaluation of the wind resource in Venezuela," ARPN Journal of Engineering and Applied Sciences, vol. 11, no. 7, 2016.

J. Gómez, "Bases para la formación de una matriz de generación eléctrica con elevada participación de energías renovables," Acading, 2019.

J. Kraft and A. Kraft, "On the Relationship between Energy and GNP," Journal of Energy and development, vol. 3, no. 2, pp. 401-403, 1978.

S. Hunt and G. Shuttlewoth, Competition and Choise in Electricity, England: John Wiley&Sons, 1996.

Published

2022-07-16

How to Cite

[1]
A. A. Barroso Molina, “Solar and wind potential of Venezuela, hybrid power supply system scenarios for the Toas Island, Zulia State”, Publ.Cienc.Tecnol, vol. 16, no. 1, pp. 16-26, Jul. 2022.

Issue

Section

Technical Report