A proof of the discreteness of the bosonic membrane spectrum

Authors

  • Rafael Torrealba Suarez Universidad Centroccidental Lisandro Alvarado, Venezuela

Keywords:

String Theory, Quantization of singular systems, spectral theory

Abstract

Using a spectral theorem for Schrodinger like equations, we present a proof of the discreteness of the spectrum for open bosonic membrane, considering L2 immersion maps from the 2 dimensional interval, at constant time, to at minkowski space. The residual area preserving symmetry and the BRST action were studied in a residual gauge xing choice that allows a simpplification of the efective membrane action. Some differences between discretised membrane and the SU(N ! 1) Yang Mills model explains apparently contradictory results reported on the spectrum.

Downloads

Download data is not yet available.

Author Biography

Rafael Torrealba Suarez, Universidad Centroccidental Lisandro Alvarado, Venezuela

Decanato de Ciencias y Tecnología, Departamento de Física

References

J. Polchinski,"String theory. Vol. 1: An introduction to the bosonic string," Cambridge, UK: Univ. Pr. (1998), "String theory. Vol. 2: Su perstring theory and beyond," Cambridge, UK: Univ. Pr. (1998); J. Schwarz ,Nucl. Phys. B (Proc. Suppl) 55 B (1997) 1.

M. P. García del Moral and A. Restuccia, "Non-abelian D=11 Super membrane," Phys. Part. Nucl. Lett. 8 , 202 (2011)

M. P. García del Moral, J. M. Pena and A. Restuccia, "The Minimally Immersed 4D Supermembrane," Fortsch. Phys. 56 , 915 (2008).

B. de Wit, M. Luscher, & H. Nicolai, Nucl. Phys. B 320 (1989) 135. B. de Wit & H. Nicolai, Supermembranes A Fond Farewell? Supermembranes and Physics in 2+1 dim. Eds M. J. Duff et al. World Scienti c (1989).

A.V. Smilga. "Super Yang Mills Quantum Mechanics and Supermembrane Spectrum". Supermembranes and Physics in 2+1 dim. Eds M. J. Duff et al. World Scienti c (1989).

J. G. Russo, Nucl. Phys. B 492 (1997) 205; R. Kallosh, hep-th/9612004.

I. Martin, A. Restuccia and R. S. Torrealba, \On the stability of com pacti ed D = 11 supermembranes," Nucl. Phys. B 521, 117 (1998).

B. de Wit, K. Peeters and J. Plefka, "Supermembranes with winding," Phys. Lett. B 409, 117 (1997).

M. Kaku, "How unstable are fundamental quantum supermembranes?," In *Toyonaka 1995, Frontiers in quantum eld theory* 96 110, M. Kaku, hep-th/9607111.

M. P. García del Moral and A. Restuccia, "On the Spectral properties of Multi-branes, M2 and M5 branes," Fortsch. Phys. 59 , 690 (2011).

L. Boulton, M. P. García del Moral and A. Restuccia, "Exact dis cretness and mass gap of N=1 symplectic Yang-Mills from M-theory," Fortsch. Phys. 55, 672 (2007).

L. Boulton, M. P. García del Moral and A. Restuccia, "Spectral proper ties in supersymmetric matrix models," Nucl. Phys. B 856, 716 (2012).

Martin, J. Ovalle and A. Restuccia, Phys.Rev. D 64, 046001(2001).

R. Banerjee, P. Mukherjee and A. Saha, "Bosonic p-brane and A-D-M decomposition," Phys. Rev. D 72 , 066015 (2005)

M. Hennaux, Phys. Rep. 126 (1985).1.; R. Torrealba and A. Restuccia, Class and Quant. Grav. 12 (1995) 2905. S. D.

Odintsov, Europhys. Lett 10 (1989), 439; K. Kikkawa and M. Yamasaki, Prog. Theor. Phys. 76 (1986) 1379.; K. Fujikawa, Phys. Lett 206 B (1988), 18.

J. M. Pena, A. Restuccia. "N=1 4D Supermembrane from 11D M. P. García del Moral" JHEP 0807:039,2008, arXiv: 0709.4632; L. Boulton, M.P. García del Moral, A. Restuccia. "Discreteness of the spectrum of the compacti ed D=11 supermembrane with non-trivial windingl" Nucl.Phys. B 671 (2003) 343-358 arXiv:hep-th/0211047.

L. Susskind, "The Anthropic landscape of string theory," In *CARR, Bernard (ed.): Universe or multiverse? 247-266 [hep-th/0302219].

M. Caicedo and A. Restuccia, Class and Quant. Grav. 10 (1993) 753.

P. A. M. Dirac, Proc. Roy. Soc. 268 A (1962), 57-67.;Y. Nambu, Lectures at the Copenhagen Symposium (1970).; T. Goto, Prog. Theor. Phys. 46 (1971), 1560.

K. Fujikawa & J. Kubo, Phys. Lett 199 B (1987), 75.

M. J. Duff , T. Inami, C. N. Pope, E. Sezgin and K. S. Stelle, Nucl.Phys. B 297 (1988), 515.

E. Sezgin, Comments on Supermembrane Theory, Proc. LASSF (1989), Editors. A. Restuccia et al, USB Venezuela, Editorial Equinoccio.

D. B. Fairlie, P. Fletchert and C.K. Zachos. Phys. Lett 218 B (1989) 203; D. B. Fairlie and P. Fletchert. "Infinite Dimensional Algebra, a Trigonometric Basis for the Classical Lie Algebra and SU (1)". Supermembrane and Physics in 2+1 dim. Editor M.J. Duff et al. World Scienti c (1989).

E. S. Fradkin, G. A. Vilkovisky, Phys. Lett. 55 B (1975) 224; I. A. Batalin, G. A. Vilkovisky, Phys. Lett. 69 B (1977) 309.

B. Simon, Ann. Phys. 146 (1983), 209. B. Simón, Adv. in Math. 30 (1978), 268.

C. Feferman & D. Phong, Commun. Pure Appl. Math. 34 (1981) 285.

M. Luscher. "Some Analytic Results Concerning the Mass Spectrum of Yang-Mills Gauge Theories on a Torus.l" Nucl. Phys., B. 219 (1983) 233.

Published

2013-06-18

How to Cite

[1]
R. Torrealba Suarez, “A proof of the discreteness of the bosonic membrane spectrum”, Publ.Cienc.Tecnol, vol. 7, no. 1, pp. 7-21, Jun. 2013.

Issue

Section

Research Article