On the first and second variation in the sense of Schramm-Riesz
Keywords:
Variation of a Function, N-Function, N-sequenceAbstract
In this paper we present a generalization of the concepts of first and second F-variation (where F is a certain sequence of positive convex function defined on [0;+8], in the sense of Schramm-Riesz for normed space valued functions defined on an interval [a;b] c R. We characterized the functions of second F- variation in the sense of Schramm-Riesz, as those that can be expressed as the integral of a function of bounded F-variation in the sense of Schramm-Riesz.
Downloads
References
M. Bracamonte, J. Giménez, N. Merentes and J. Sánchez. On second Riesz F- variation of normed space valued maps, Advances in Pure Mathematics, 2, No. 1, 45-58. (2012).
D. Bugajewska. On the superposition operator in the space of functions of bounded variation, revisted. Mathematical and Computer Modelling 52(5-6). 791- 796 (2010).
V. V. Chistyakov. Mappings of generalized variation and composition operators. J. Math. Sci. 11, 2455 - 2466(2002).
Z. Cybertowicz and W. Matuszewska. Functions of bounded generalized variations, Comment. Math. Prace Mat. 20, No. 1, 29-52 (1977).
J. Giménez, N. Merentes and S. Rivas. Integral Representation of functions of bounded second F-variation in the sense of Schramm. Opuscula Mathematica, Vol 32, No 1, 137-151 (2012).
C. Jordan. Sur la serie de Fourier, C. R. Acad. Sci. Paris, 228-230, 2 (1881).
Ch. J. De la Vallee Poussin. Sur la convergence des formules d'interpolation entre ordennees equidistantes, Bull. Acad. Sei. Belg. 314-410 (1908).
T. Ereu, N. Merentes and J. L. Sánchez. Some remarks on the algebra of functions of two variables with bounded total F-variation in Schramm sense. Commentationes Mathematicae (2010).
T. Ereu, N. Merentes, B. Rzepka, J. Sánchez. On composition operator in the algebra of functions of two variables with bounded total F- variation in Schramm sense. Journal of Mathematics and Applications. No 33, pp 35-50 (2010).
T. Ereu, N. Merentes, J. Sánchez, and M. Wrobel. Uniformly continuous composition operators in the space of bounded Phi-variation functions in Schramm sense. Opuscula Mathematica.
L. Maligranda. Orlicz Spaces and Interpolation, Seminars in Math. 5, University of Campinas, IMECC-UNICAMP, Brasil, (1989).
Yu. T. Medvedev. Generalization of a theorem of F. Riesz, Uspehi Matem. Nauk (N.S.) 8 (1953), No. 6(58), 115-118 (Russian).
J. Musielak and W. Orlicz. On modular spaces, Studia Math. 18 (1959), 49-65.
J. Musielak. Orlicz Spaces and Modular Spaces, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, (1983).
F. Riesz. Sur certains systems singuliers d'equations integrates, Annales de L'Ecole Norm. Sup., Paris, (3) 28, 33-68 (1911).
M. Russell and C. J. F. Upton. A generalization of a theorem by F. Riesz, Analysis Math, 9 (1983), 69-77.
M. Schramm. Functions of F-bounded variation and Riemann-Stieltjes integration, Trans. Amer. Math. Soc. 287, 49-63(1985).
L. C. Young. Sur une generalisation de la notion de variation de pussance pieme bornee au sens de M. Wiener, et sur la convergence des series de Fourier, C. R. Acad. Sci. Paris, 204, Ser A-B, 470-472 (1937).
Published
How to Cite
Issue
Section
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
The opinions expressed by the authors do not necessarily reflect the position of the publisher of the publication or of UCLA. The total or partial reproduction of the texts published here is authorized, as long as the complete source and the electronic address of this journal are cited.
The authors fully retain the rights to their works, giving the journal the right to be the first publication where the article is presented. The authors have the right to use their articles for any purpose as long as it is done for non-profit. Authors are recommended to disseminate their articles in the final version, after publication in this journal, in the electronic media of the institutions to which they are affiliated or personal digital media.