A SAEM algorithm for matrix completion problems

Authors

  • Anaís Frangeline Acuña Sosa Universidad Centroccidental Lisandro Alvarado, Venezuela
  • Jhonny Escalona Pérez Universidad Centroccidental Lisandro Alvarado, Venezuela

Keywords:

Matrix completion, EM algorithm, SAEM algorithm, collaborative filtering, principal components analysis

Abstract

In this work we dealt with matrix completion problem. This problem arises in different fields, for example, systems and control theory, image processing and collaborative filtering. Given a probabilistic matrix factorization model, we present an approach based on Bayesian statistics and a stochastic expectation maximization algorithm to retrieve an array of data from a sample of its inputs. The proposed method does not require regularization parameters and estimates the rank of the matrix, in contrast to the BPMF method. The results show that the proposed method outperforms the rank of the matrix comparing to an augmented lagrangian algorithm and it is more efficient than the BPMF method.

Downloads

Download data is not yet available.

Author Biographies

Anaís Frangeline Acuña Sosa, Universidad Centroccidental Lisandro Alvarado, Venezuela

Departamento de Investigación ́ de Operaciones y Estadística,
Decanato de Ciencias y Tecnología,
Universidad Centroccidental Lisandro Alvarado, Barquisimeto, Venezuela,
anais.frangeline@gmail.com

Jhonny Escalona Pérez, Universidad Centroccidental Lisandro Alvarado, Venezuela

Departamento de Investigación ́ de Operaciones y Estadística,
Decanato de Ciencias y Tecnología,
Universidad Centroccidental Lisandro Alvarado, Barquisimeto, Venezuela,
jhonnyescalona@ucla.edu.ve

SAEM

Published

2015-06-30

How to Cite

[1]
A. F. Acuña Sosa and J. Escalona Pérez, “A SAEM algorithm for matrix completion problems”, Publ.Cienc.Tecnol, vol. 9, no. 1, pp. 11-26, Jun. 2015.

Issue

Section

Research Article