Ordenamiento de números difusos usando centroides: Aspectos prácticos
Palabras clave:
números difusos, ordenamiento, centroide, bases de datos, Haskell, difusoResumen
Este artículo corresponde a la segunda parte de un estudio donde se explora el ordenamiento de números difusos con miras a su uso en consultas a bases de datos. En la primera parte: se presentó una nueva propuesta que compara dos números difusos usando la abscisa del centroide; y se demostró que es una relación orden total. En esta segunda parte: se abordan casos de estudio que comprenden una vasta diversidad de posibles situaciones de comparación de números difusos con distintas representaciones; se presenta una implementación en Haskell del método propuesto; y se pone en evidencia su adecuación a la intuición humana.
Descargas
Citas
[2] J. Galindo; A. Urrutia; M. Piattini. Fuzzy databases: Modeling, design and implementation. Idea Group Publishing Hershey, USA, 2006. OnLine.
[3] Pushpinder Singh. A novel method for ranking generalized fuzzy numbers. Journal of Information Science and Engineering, 31:1373–1385, 2015. OnLine.
[4] J.J Buckley; E. Eslami. Fuzzy ordering of fuzzy numbers. International Journal of Uncertainty, Fuzziness and Knowledge–Based Systems, 12(01):105–114, 2004. OnLine.
[5] Y. Yuan. Criteria for evaluating fuzzy ranking methods. Fuzzy Sets and Systems, 43(2):139–157, 1991. OnLine.
[6] S. H. Nasseri; F. Taleshian; Z. Alizadeh; J. Vahidi. A new method for ordering LR fuzzy number. The Journal of Mathematics and Computer Science, 4(3):283–294, 2012. OnLine.
[7] T.C. Chu; P. Charnsethikul. Ordering alternatives under fuzzy multiple criteria decision making via a fuzzy number dominance based ranking approach. International Journal of Fuzzy Systems, 15(3):263–273, 2013.
[8] S. Carrasquel; D. Coronado; R.Monascal; R. Rodriguez. Ordenamiento de números difusos usando centroides. aspectos teóricos. Publicaciones en Ciencia y Tecnología, 12(2):57–67, 2018. OnLine.
[9] P. Bushan Rao; N. R.Shankar. Ranking fuzzy numbers with a distance method using circumcenter of centroids and an index of modality. Advances in Fuzzy Systems, pages 1–7, 2011. OnLine.
[10] L. A. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, 1965. OnLine.
[11] Ching-Hsue Cheng. A new approach for ranking fuzzy numbers by distance method. Fuzzy Sets and Systems, 95(3):307–317, 1998. OnLine.
[12] Y.M Wang; J.B. Yang; D.L. Xu; K.S. Chin. On the centroids of fuzzy numbers. Fuzzy sets and systems, 157(7):919–926, 2006. OnLine.
[13] Ta-Chung Chu; Chung-Tsen Tsao. Ranking fuzzy numbers with an area between the centroid point and original point. Computers &Mathematics with Applications, 43(1-2):111–117, 2002, OnLine.
[14] H. B. Mitchell; P. A. Schaefer. On ordering fuzzy numbers. International Journal of Intelligent Systems, 15(11):981–993, 2000. OnLine.
[15] A. H. Ganesh; M. Suresh. Ordering of generalised trapezoidal fuzzy numbers based on area method using euler line of centroids. Advances in Fuzzy Mathematics, 12(4):783–791, 2017.
Publicado
Cómo citar
Número
Sección
Derechos del/de autor/es a partir del año de publicación
Esta obra está bajo la licencia:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
Las opiniones expresadas por los autores no necesariamente reflejan la postura del editor de la publicación ni de la UCLA. Se autoriza la reproducción total o parcial de los textos aquí publicados, siempre y cuando se cite la fuente completa y la dirección electrónica de esta revista.
Los autores conservan integramente los derechos sobre sus obras, cediendo a la revista el derecho de ser la primera publicación donde se presenta el artículo. Los autores(as) tienen el derecho de utilizar sus artículos para cualquier propósito siempre y cuando se realice sin fines de lucro. Se recomienda a los autores(as) difundir sus obras en la versión final, luego de publicada en esta revista, en los medios electrónicos de la intituciones a las cuales están afiliadas o medios digitales personales