Algunas aplicaciones de la biotecnología en nutrición de rumiantes

Autores/as

  • Alis Teresa Márquez Araque Universidad Centroccidental Lisandro Alvarado. Decanato de Ciencias Veterinarias. Departamento de Nutrición y Forrajicultura. Venezuela

Palabras clave:

Biotecnología, nutrición, rumiantes

Resumen

En el campo de la nutrición de rumiantes, la biotecnología ofrece herramientas de diferentes fuentes y aplicación diversa, que incluyen: la intervención genética de plantas, modificación genética de microorganismos, productos a base de microorganismos benéficos, complejos de enzimas fibrolíticas, y procesos de bio-conversión. La aplicación de herramientas biotecnológicas es útil para mejorar el valor nutritivo de forrajes y otros alimentos, la salud y el rendimiento animal, así como también proporciona beneficios para él ambiente, siempre y cuando se promueva el uso con conciencia, ética y racionalidad. En este documento se describen algunas de las técnicas o prácticas biotecnológicas de mayor uso o potencial aplicación en nutrición de rumiantes.

Descargas

La descarga de datos todavía no está disponible.

Citas

Abdel-Azim, S.N., M.A. Ahmed, F. Abo-Donia, and H. Soliman. (2011). Evaluation of fungal treatment of some agricultural residues. Egyptian J. Sheep Goat Sci. 6:1-13.

Aboagye, I.A., and K.A. Beauchemin. (2019). Potential of molecular weight and structure of tannins to reduce Methane emissions from ruminants: A Review. Animals. 9:856.

ADSF. (2002). Les plantes génétiquement modifiées. Rapport sur la science et la technologie n°13. Académie Des Sciences, Paris, France.

Agarwal, N. (2002). Microbial feed additives for ruminants. In: Recent Advances in Rumen Microbiology. Kamra, D.N., N. Agarwal, L.C. Chaudhary, and D.K. Agrawal (eds). IVRI Publication, Izatnagar, India. pp. 47-56.

Agodia, A., M. Barchittaa, A. Grillob, and S. Sciaccac (2006). Detection of genetically modified DNA sequences in milk from The Italian Market. Int. J. Hyg. Environ-Health. 209: 81-88.

Aikman, P.C., P.H. Henning, D.J. Humphries, and C.H. Horn. (2011). Rumen pH and fermentation characteristics in dairy cows supplemented with Megasphaera elsdenii NCIMB 41125 in early lactation. J. Dairy Sci. 94:2840–2849.

Akinfemi, A. (2012). Upgrading of sugarcane bagasse by solid state fermentation with Pleurotus sajorcajuand Pleurotus floridaand the impact on the chemical composition and in vitro digestibility. Biotechnol. Anim. Husbandry. 28:603-611.

Akinfemi, A., and O.A. Ogunwole. (2012). Chemical composition and in vitro digestibility of rice straw treated with Pleurotus ostreatus, Pleurotus pulmonarius and Pleurotus tuber-regium. Slovak J. Anim. Sci. 45:14-20.

Allison, M.J., A.C. Hammond, and R.J. Jones. (1990). Detection of rumen bacteria that degrade toxic dihydroxypyridine compounds produced from mimosine. Appl. Environ. Microbiol. 56: 590–594.

Antunovic, Z., M. Speranda, D. Amidzic, V. Seric, Z. Steiner, N. Doma-Cinovic, and F. Boli. (2006). Probiotic application in lambs nutrition. Krmiva. 4:175-180.

Attwood, G.T., E. Altermann, W.J. Kelly, S C. Leahy, L. Zhang, and M. Morrison. (2011). Exploring rumen methanogen genomes to identify targets for methane mitigation strategies. Anim. Feed Sci. Technol. 166-167:65-75.

Ayad, M.A., B. Benallou, M.S. Saim, M.A. Smadi, and T. Meziane. (2013). Impact of feeding yeast culture on milk yield, milk components, and blood components in Algerian dairy herds. Vet. Sci. Technol. 4:1-5.

Ayala, M.M., M.S. González, R.J. Pinos, C. Vázquez, M.M. Meneses, O. Loera, and G.D. Mendoza. (2011). Fibrolytic potential of spent compost of the mushroom Agaricus bisporus to degrade forages for ruminants. Afr. J. Microbiol. Res. 5:241-249.

Beauchemin, K.A., and L. Holtshausen. (2010). Developments in enzyme usage in ruminants. In: M.R. Bedford and G.G. Partridge (eds). Enzymes in farm animal nutrition. 2nd ed. CABI, Oxford, UK. p. 206–230.

Beauchemin, K.A., D. Colombatto, and D.P. Morgavi. (2004). A rationale for the development of feed enzyme products for ruminants. Can. J. Anim. Sci. 84:23–36.

Beauchemin, K.A., D. Colombatto, D.P. Morgavi, and W.Z. Yang. (2003). Use of exogenous fibrolytic enzymes to improve feed utilization by ruminants. J. Anim. Sci. 81:E37–E47.

Bitencourt, L.L., J.R. Martins Silva, B. Menezes Lopes de Oliveira, G.S. Dias Júnior, F. Lopes, S. Siécola Júnior, O. de Fátima Zacaroni, and M.N. Pereira. (2011). Diet digestibility and performance of dairy cows supplemented with live yeast. Sci. Agric. (Piracicaba, Braz.) 68:301-307.

Bruno, R.G., H.M. Rutigliano, R.L. Cerri, P.H. Robinson, and J.E. Santos. (2009). Effect of feeding Saccharomyces Cerevisiae on performance of dairy cows during summer heat stress. Anim. Feed Sci. Tech. 150:175-186

Callaway, E.S., and S. A. Martin. (1997). Effects of a Saccharomyces cerevisiae culture on ruminal bacteria that utilize lactate anddigest cellulose. J. Dairy Sci. 80:2035–2044.

Castro, A.L., P.C. de Aguiar Paiva, E. Souza Dias, J. dos Santos. (2004). Avaliacao das alteracoes bromatologicas e degradabilidade do residuo de lixiviadera do algodón apos tratamento biologico com Pleurotus sajor-caju. Cienc. Agrotec. Lavras. 3:608-613.

Chen, L., Y. Shen, C. Wang, L. Ding, F. Zhao, M. Wang, J. Fu, and H. Wang. (2019). Megasphaera elsdeniilactate degradation pattern shifts in rumen acidosis models. Front. Microbiol. 10:162.

Chesson, A., C.S. Stewart, and R.J. Wallace. (1982). Influence of plant phenolic acids on growth and cellulolytic activity of rumen bacteria. Appl. Environ. Microbiol. 44:597-603.

Chiquette, J., M. J. Allison, and M. A. Rasmussen. (2012). Use of Prevotella bryantii25A and a commercial probiotic during subacute acidosis challenge in midlactation dairy cows. J. Dairy Sci. 95:5985-5995.

Clark, H., C. Pinares-Patino and C. deKlein. (2005). Methane and nitrous oxide emissions from grazed grasslands. In: Grassland: a global resource. Ed. McGilloway, D.A. Wageningen Academic Publishers, Netherlands. pp. 279-294.

Colombatto, D., F.L. Mould, M.K. Bhat, D.P. Morgavi, K.A. Beauchemin, and E. Owen. (2003). Influence of fibrolytic enzymes on the hydrolysis and fermentation of pure cellulose and xylan by mixed ruminal microorganism in vitro. J. Anim. Sci. 81:1040-1050.

Comité de Biotecnología de la Academia Mexicana de Ciencia. (2017). Transgénicos. Grandes beneficios, ausencia de daños y mitos. 501 p.

Convenio sobre la Diversidad Biológica (CDB). (1992). Naciones Unidas. 32 pg.

Counotte, G.H., l.R. Prins, R.H. Janssen, and M.J. Debie. (1981). Role of Megasphaera elsdeniiin the fermentation of DL- [2-'3C]lactate in the rumen of dairy Cattle. Appl. Environ. Microbiol. 42:649-655.

Crosby, B., B. Collier, D.Y. Thomas, R.M. Teather, and J.D. Erfle. (1984). Cloning and expression in Escherichia coliof cellulase genes from Bacteroides succinogenes. In: S. Hasain (ed.), Fifth Canadian Bioenergy R and D Seminar. Elsevier Applied Science Publications, Amsterdam. pp. 573-576.

De Ondarza, M.B., C.J. Sniffen, H. Graham, and P. Wilcock. (2010). Case Study: Effect of supplemental live yeast on yield of milk and milk components in high-producing multiparous Holstein cows. The Professional Anim. Scientist. 26: 443-449.

Degirmencioglu, T., T. Ozcan, S. Ozbilgin, and S. Senturklu. (2013). Effects of yeast culture addition (Saccharomyces cerevisiae) to Anatolian water buffalo diets on milk composition and somatic cell count. Mljekarstvo.63:42-48.

Desnoyers, M., S. Giger-Reverdin, G. Bertin, C. Duvaux-Ponter, and D. Sauvant. (2009). Meta-analysis of the influence of Saccharomyces cerevisiae supplementation on ruminal parameters and milk production of ruminants. J. Dairy Sci.92:1620-1632.

Dhiman, T.R., M.S. Zama, R.R. Gimenez, J.L. Walters, and R. Treacher. (2002). Performance of dairy cows fed forage treated with fibrolytic enzymes prior to feeding. Anim. Feed Sci. Technol. 101:115-125.

Doyle, N., P. Mbandlwa, W.J. Kelly, G. Attwood, Y. Li, R.P. Ross, C. Stanton, and S. Leahy. (2019). Use of lactic acid bacteria to reduce methane production in ruminants, a Critical Review. Front. Microbiol. 10:2207.

Drouillard, J.S., P.H. Henning, H.H. Meissner, and K.J. Leeuw. (2012). Megasphaera elsdenii on the performance of steers adapting to a high-concentrate diet, using three or five transition diets. S. Afr. J. Anim. Sci. 42:195-199.

Elam, N.A., J.F. Gleghorm, J.D. Rivera, M.L. Galyean, P.J. Defoor, M.M. Brashears, and S.M. Younts-Dahl. (2003). Effects of live cultures of lactobacillus acidophilus(strains np45 and np51) and propionibacterium freudenreichiion performance, carcass, and intestinal characteristics, and Escherichia colistrain o157 shedding of finishing beef steers. J. Anim. Sci. 81:2686-2698.

FAO-AGAL. (2016). Síntesis - Ganadería y los Objetivos de Desarrollo Sostenible. Programa Mundial de Ganadería Sostenible. Roma, Italia. 13 p.

FAO. (2001). Health and Nutritional Properties of Probiotics in Food including Powder Milk with Live Lactic Acid Bacteria. Cordoba, Argentina. 34p.

FAO. (2003). Biotecnología agrícola para países en desarrollo. Foro electrónico. 125 pg.

FAO. (2016). The State of Food and Agriculture. Climate Change. Agriculture and Food Security. Rome, Italy. 194 Pg.

FAO/WHO. (1991). Strategies for assessing the safety of food produced by biotechnology. In: Report of Joint FAO/WHO Consultation, World Health Organization Geneva. 69 p.

Fári, M. G., and U.P. Kralovánszky. (2006). The founding father of biotechnology: Károly (Karl) ErekyOrsós Ottó Laboratory. Int. J. Horticul. Sci. 12: 9-12.

FDA. (1992). Statement of Policy: Foods Derived from New plant Varieties. Federal Register 57:22984-23005.

Fernández, S., M. Fraga, E. Silveira, A.N. Trombert, A. Rabaza, M. Pla, and P. Zunino. (2018). Probiotic properties of native Lactobacillusspp. strains for dairy calves. Beneficial Microbes: 9:613- 624.

Frizzo, L., M. Zbrun, L. Soto, and M. Signorini. (2011). Effects of probiotics on growth performance in young calves: A meta-analysis of randomized controlled trials. Anim. Feed Sci.Technol. 169:147-156.

Fu C., X. Xiao, Y. Xi, Y. Ge, F. Chen, J. Bouton, R.A. Dixon, and Z.Y. Wang. (2011). Down regulation of cinnamyl alcohol dehydrogenase (CAD) leads to improved saccharification efficiency in switchgrass. BioEnergy Res. 4:153-164.

Fu, C., R. Sunkar, C. Zhou, H. Shen, J.Y. Zhang, J. Matts, J. Wolf, D.G. Mann, C. N. Stewart, Y. Tang, and Z.Y. Wang. (2012). Overexpression of miR156 in switchgrass (Panicum virgatumL.) results in various morphological alterations and leads to improved biomass production. Plant Biotechnol. J. 10:443-452.

García, C.C., G.D. Mendoza, S. González, M. Cobos, M.E. Ortega, and L. Ramírez. (2000). Effect of a yeast culture (Saccharomyces cerevisiae) and monensin on ruminal fermentation and digestion in sheep. Anim. Feed Sci. Technol. 83:165-170.

Gilbert, H.J., G.P. Hazlewood, J.L. Laurie, C.G. Orpin, and G.P Xue. (1992). Homologous catalytic domains in a rumen fungal xylanase. Evidence for gene duplication and prokaryotic origin. Mol. Microbiol. 6:2065-2072.

Gondo, T., N. Umami, M. Muguerza, and R. Akashi. (2017). Plant regeneration from embryogenic callus derived from shoot apices and production of transgenic plants by particle inflow gun in dwarf napier grass (Pennisetum purpureumSchumach.). Plant Biotechnol. 34:143-150.

Grabber, J.H., J. Ralph, and R.D. Hatfield. (1998). Severe inhibition of maize wall degradation by synthetic lignins formed with coniferaldehyde. J. Sci. Food Agric. 78:81-87.

Gregg, K., A. Rowan, and C. Ware. (1993). Digestion of filter-paper by cellulases cloned from Ruminococcus albus AR67. In: Shimada, K., K. Ohmiya, Kobay, K. Sakka, and S. Karita (eds). Procc. MIE BIOFORUM 93-Genetics, Biochemistry and Ecology of G.P. Tokyo, Japan. pp. 166-178.

Gruber, M.Y., H. Ray, and L. Blathut-Beatty. (2000). Genetic manipulation of condensed tannin synthesis in forage crops. In: Spangenberg, G. (ed.) Molecular Breeding of Forage Crops. Kluwer Academic Publishers, Dordrecht. Chapter 11:189-218.

Guarner, F., and G.J. Schaafsma. (1998). Probiotics. Int. J. Food Microbiol. 39:237-238.

Hartnel, G.F. (2010). Feeding Transgenic Feedstuffs to Cattle. In:Proc. 21st Florida Ruminant Nutr. Symp., Gainesville, FL. pp. 68-78.

Henning, P.H., C.H. Horn, K.J. Leeuw, H.H. Meissner, and F.M. Hagg. (2010). Effect of ruminal administration of the lactate-utilizing strain Megasphaera elsdenii(Me) NCIMB 41125 on abrupt or gradual transition from forage to concentrate diets. Anim. Feed Sci. Technol. 157:20–29.

Higginbotham, G.E., J.E. Santos, S.O. Juchem, and E.J. De Peters. (2004). Effects of feeding Aspergillus oryzaeextract on milk production and rumen parameters. Liv. Prod. Sci. 86:55-59.

Hristov, A.N., G. Varga, T. Cassidy, M. Long, K. Heyler, S. K. Karnati, B. Corl , C. J. Hovde, and I. Yoon. (2010). Effect of Saccharomyces cerevisiae fermentation product on ruminal fermentation and nutrient utilization in dairy cows. J. Dairy Sci. 93:682-692.

Johnson, K.A., and D.E. Johnson. (1995). Methane emissions from cattle. J. Anim. Sci. 73:2483-2492.

Jones, R.J., and R.G. Megarrity. (1986). Successful transfer of DHP-degrading bacteria from Hawaiian goats to Australian ruminants to overcome the toxicity of Leucaena. Aust. Vet. J. 63: 259-262.

Jones, W.T., and J.L. Mangan. (1977). Complexes of the condensed tannins of sainfoin (Onobrychis viciifolia Scop.) with fraction leaf protein and with submaxillary mucoprotein, and their reversal by polyethylene glycol and pH. J. Sci. Food Agric. 28:126-36.

Jung H.G., D. Mertens, and R.L. Phillips. (2011). Effect of reduced ferulate-mediated lignin/arabinoxylan cross-linking in corn silage on feed intake, digestibility, and milk production. J. Dairy. Sci. 94:5124-5137.

Jung, H.G., and M.S. Allen. (1995). Characteristics of plant cell walls affecting intake and digestibility of forage by ruminants. J. Anim. Sci. 73:2774-2790.

Jung, H.G., and R.L. Phillips. (2010). Putative seedling ferulate ester (sfe) maize mutant: morphology, biomass yield, and stover cell wall composition and rumen degradability. Crop Sci. 50:403-418.

Kang, P., A.K. Bao, T. Kumar, Y. Pan, Z. Bao, F. Wang, and S.M. Wang. (2016). Assessment of Stress Tolerance, Productivity, and Forage Quality in T1 Transgenic Alfalfa Co-overexpressing ZxNHX and ZxVP1-1 from Zygophyllum xanthoxylum. Front. Plant Sci. 7:1598.

Khan, M.R.I., A. Ceriotti, L. Tabe, A. Aryan, W. MCNabb, A. Moore, S. Craig, D. Spencer, and T.J. Higgins. (1996). Accumulation of a sulphur-rich seed albumin from sunflower in the leaves of transgenic subterranean clover (Trifolium subterraneum L.). Transgenic Res. 5:179-185.

Khattab, M.S., AM. Abd El Tawab, and M.T. Fouad. ( 2017). Isolation and characterization of anaerobic bacteria from frozen rumen liquid and its potential characterizations. Int. J. Dairy Sci., 12: 47-51.

Klieve, A.V., R.S. McLennan, and D. Ouwerkerk. (2012). Persistence of orally administered Megasphaera elsdeniiand Ruminococcus bromiiin the rumen of beef cattle fed a high grain (barley) diet. Anim. Prod. Sci. 52:297-304.

Krause, D.O., R.J. Bunch, B.D. Dalrymple, K.S. Gobius, W.J. Smith, G.P. Xue, and C.S. McSweeney. (2001). Expression of a modified Neocallimastix patriciarumxylanase in Butyrivibrio fibrisolvensdigests more fibre but cannot effectively compete with highly fibrolytic bacteria in the rumen. J. Appl. Microbiol. 90:388-396.

Krehbiel, C.R., S.R. Rust, G. Zhang, and S.E. Gilliland. (2003). Bacterial direct-fed microbials in ruminant diets: performance response and mode of action. J. Anim. Sci. 81 (E. Suppl. 2), E120-E132.

Krizova L., M. Richter, J. Trinacty, J. Riha, and D. Kumprechtova. (2011). The effect of feeding live yeast cultures on ruminal pH and redox potential in dry cows as continuously measured by a new wirelees device. Czech J. Anim. Sci. 56: 37-45.

Kumar, D.S., J. Rama Prasad, and E. Raghava Rao. (2011). Efect of dietary inclusion of yeast culture (Saccharomyces cerevisiae) on growth performance of graded Murrah buffalo bull calves. Buffalo Bulletin. 30:63-66.

Kung, L.Jr. (2001). Direct-fed microbials for dairy cows and enzymes for lactating dairy cows: New theories and applications. Penn State Dairy Cattle Workshop Proc. pp. 86-102.

Le Page, C., L. Mackin, A. Lidgett., and G. Spangenberg. (2000). Development of transgenic white clover expressing chimeric bacterial levan sucrase genes for enhanced tolerance to drought stress. In: Proc. 2end International Symposium Molecular Breeding of Forage Crops. Lorne and Hamilton, Victoria, Australia. 80 (Abst.).

Leahy, S.C., W.J. Kelly, R.S. Ronimus, N. Wedlock, E. Altermann, and G.T. Attwood. ( 2013). Genome sequencing of rumen bacteria and archaea and its application to methane mitigation strategies. Animal. 7:235-243.

Lema M., L. Williams, and D.R. Rao. (2001). Reduction of fecal shedding of enterohemorrhagic Escherichia coli O157:H7 in lambs by feeding by microbial feed supplement. Small Rumin. Res. 39:31-39.

Leng, R.A. (1990). The impact of livestock development on environmental change. In: Strategies for sustainable animal agriculture in developing countries. FAO Animal Production and Health. Paper 107. S. Mack (ed.).

Lesmeister. K.E., A.J. Heinrichs, and M.T. Gabler. (2004). Effects of supplemental yeast (Saccharomyces cerevisiae) culture on rumen development, growth characteristics, and blood parameters in neonatal dairy calves. J. Dairy Sci. 87:1832-1839.

Lettat, A., P. Nozière, M. Silberberg, D.P. Morgavi, C. Berger, and C. Martin. (2012). Rumen microbial and fermentation characteristics are affected differently by bacterial probiotic supplementation during induced lactic and subacute acidosis in sheep. BMC Microbiol. 12:142.

Long, M., X. Pang, X. Qin, P. Li, L. Li, S. H. Yang, Z. Wang, X. Li, and G. Liu. (2012). Effect of deleting acetic acid-producing key enzyme gene of Selenomonas ruminantium on the ruminal fermentation in vitro. Afr. J. Microbiol. Res. 6: 6476-6482.

López-Inzunza HJ., B.B. Chongo-García, O. O-León, J.E. Guerra-Liera, H.López-López, M. Luna-López, L.A. López-Juárez, y S.J. Castro-Camacho. (2018). Efecto del Fibrozyme® en la degradabilidad y la cinética de degradación de la paja de garbanzo (Cicer arietinum). Rev. Cien. Agric. 15:7-13.

Mao, H.L., H.L. Mao, J.K. Wang, J.X. Liu, and I. Yoon. (2013). Effects of Saccharomyces cerevisiaefermentation product on in vitrofermentation and microbial communities of low-quality forages and mixed diets. J. Anim. Sci. 91:3291-3298.

Márquez-Araque, A., G. Mendoza, J.M. Pinos-Rodríguez, H. Zavaleta, S. González, S. Buntinx, O. Loera, and M. Meneses. (2009). Effect of fibrolytic enzymes and incubation pH on in vitrodegradation of NDF extracts of alfalfa and orchardgrass. Ital. J. Anim. Sci. 8:221-230.

Márquez-Araque, A.T., G.D. Mendoza, S. González, S.,Buntinx and O. Loera. (2007). Actvidad fibrolítica de enzimas producidas por Trametessp. EuM1, Pleurotus ostreatus y Aspergillus nigerAD96.4 en fermentación sólida. Interciencia 32:780-785.

Mazza, R., S. Mirko, M. Morlacchini, G. Piva, and A. Marocco. (2005). Assessing the transfer of genetically modified DNA from feed to animal tissues. Transgenic Research. 14:775-784.

Meissner, H.H., P.H. Henning, CH. Horn, K.J. Leeuw, F.M. Hagg, and G. Fouché. (2010). Ruminal acidosis: A review with detailed reference to the controlling agent Megasphaera elsdenii NCIMB 41125. S. Afric. J. Anim. Sci. 40:79-100.

Mendoza, G.D., O. Loera-Corral, F.X. Plata-Pérez, P.A. Hernández-García, and M. Ramírez-Mella. (2014). “Considerations on the Use of Exogenous Fibrolytic Enzymes to Improve Forage Utilization,” The Scientific World Journal, Volume 2014, Article ID 247437. 9 p.

Mendoza, P.S., P.F. Plata, V.R. Ricalde y G.D. Mendoza. (1996). Efecto del Saccharomyces cerevisiae 1026 y monensina sódica en el consumo de alimento y ganancia de peso en ovinos en crecimiento. XX Congreso Nacional de Buiatria, Acapulco Guerrero. pp. 509-512.

Mertens, D.R. 1994. Regulation of forage intake. In: Fahey, G.C. Jr. (ed.). Forage Quality Evaluation and Utilization. ASA-CSSA,ASSA, Madison, Wi. pp. 450-493.

Mikulec, Z., T. Mašek, B. Habrun, and H. Valpotic. (2010). Influence of live yeast cells (Saccharomyces cerevisiae) supplementation to the diet of fattening lambs on growth performance and rumen bacterial number. Veterinarski Archiv.80:695-703.

Mirzaei-Aghsaghali, A., and N. Maheri-Sis. (2011). Factors affecting mitigation of methane emission from ruminants. I: Feeding Strategies. AJAVA. 6:888-908.

Moallem, U., H. Lehrer, L. Livshitz, M. Zachut, and S. Yakoby. (2009). The effects of live yeast supplementation to dairy cows during the hot season on production, feed efficiency, and digestibility. J. Dairy Sci. 92:343-351.

Morris, P., and M.P. Robbins. (1997). Manipulating condensed tannins in forage legumes. In:B.D. McKersie and D.C.W. Brown (eds). Biotechnology and the Improvement of Forage Legumes. CAB International, Wallingford, CT. pp 147-173.

Nichols, C.A., K.H. Jenkins, J. Vasconcelos, G. Erickson, S.A. Furman, R.S. Goodall, and T. Klopfenstein. (2011). Effects of Lactobacillus acidophilusand Yucca schidigeraon finishing performance and carcass traits of feedlot cattle. Nebraska Beef Cattle Reports. Paper 617.

Nocek, J.E., and W.P. Kautz. (2006). Direct-fed microbial supplementation on ruminal digestion, health, and performance of pre- and postpartum dairy cattle. J. Dairy Sci. 89:260-266.

Nocek, J.E., W.P. Kautz, J.A.Z. Leedle, and E. Block. (2003). Direct-fed microbial supplementation on the performance of dairy cattle during the transition period. J. Dairy Sci. 86:33-335.

OECD. (1993). Safety evaluations of foods derived by modern technology: concepts and principles. Organization for Economic Cooperation and Development, Paris, France.

Orpin, C.G., and G. Xue. (1993). Genetic of fibre degradation in the rumen, particulary in relation to anaerobic fungi, and its modification by recombinant DNA technology. In: Procc. XVII International Grassland Congress. NZ Grassland Association, pp. 1209-1214.

Osman, M., J. Stabel, K. Onda, S. Down, W. Kreikemeier, D. Ware, and D. Beitz. (2012). Modification of digestive system microbiome of lactating dairy cows by feeding Bovamine®: Effect on Ruminal Fermentation. Animal Industry Report: AS 658, ASL R2701.

Ozsoy, B., S. Yalcin, Z. Erdogan, Z. Cantekin, and T. Aksu. (2013). Effects of dietary live yeast culture on fattening performance on some blood and rumen fluid parameters in goats. Revue Méd. Vét.164:263-271.

Paryad, A., and M. Rashidi. (2009). Effect of Yeast (Saccharomyces cerevisiae) on apparent digestibility and nitrogen retention of tomato pomace in Sheep. Pak. J. Nutr.. 8: 273-278.

Pech Cervantes, A.A., M. Irfan, I. Ogunade, Y. Jiang, D. Kim, C. González, T. Hackmann, A. Oliveira, D. Vyas, and A. Adesogan. (2019). Exogenous fibrolytic enzymes and recombinant bacterial expansins synergistically improve hydrolysis and in vitro digestibility of bermudagrass haylage. J. Dairy Sci. 102: 8059 - 8073.

Peláez-Acero, A., M. Meneses-Mayo, L. Miranda-Romero, M. Ayala-Martínez, M. Crosby-Galván, O. Loera-Corral y M.D. Megías-Rivas. (2011). Enzimas fibroliticas producidas por fermentación en estado sólido para mejorar los ensilajes de caña de azúcar. Agrociencia. 45:675-685.

Peterson, R.E., T.J. Klopfenstein, G.E. Erickson, J. Folmer, S. Hinkley, R.A. Moxley, and D.R. Smith. (2007). Effect of Lactobacillus acidophilusstrain NP51 on Escherichia coliO157:H7 fecal shedding and finishing performance in beef feedlot cattle. J. Food Prot. 70:287-291.

Pinos-Rodríguez, J.M., S.S. González Muñoz, G. Mendoza Martínez, R. Bárcena Gama y M. Cobos Peralta. (2001). Efecto de enzimas fibrolíticas glucosiladas en la digestibilidad in vitro de MS y MO de alfalfa (Medicago sativa) y ballico (Lolium perenne). Rev. Cient. FCV-LUZ. 11:505-509.

Polizeli, M.L., A.C. Rizzatti, R. Monti, H.F. Terenzi, J.A. Jorge, and D.S. Amorin. (2005). Xylanases from fungi: properties and industrial application. Appl. Microbiol. Biotechnol. 67:577-591.

Ramírez, A., M.E. Ortega, S. González, C. Becerril y J. Ayala. (2003). Efecto de la suplementación con dos cepas de Saccharomyces cerevisiae en el comportamiento de becerras en crecimiento. Revista Cubana de Ciencia Agrícola. Tomo 37, No. 2.

Refat, B., D.A. Christensen, J.J. McKinnon, W. Yang, A.D. Beattie, T.A. McAllister, J.S. Eun, G.A. Abdel-Rahman, and P. Yu. (2018). Effect of fibrolytic enzymes on lactational performance, feeding behavior, and digestibility in high-producing dairy cows fed a barley silage-based diet. J Dairy Sci 101:7971-7979.

Ribeiro, G.O., A. Badhan, J. Huang, K.A. Beauchemin, W. Yang, Y. Wang, A. Tsang, and T.A. McAllister. (2018). New recombinant fibrolytic enzymes for improved in vitro ruminal fiber degradability of barley straw. J. Anim. Sci.96:3928-3942.

Robinson, J.A., W.J. Smolenski, R.C. Greening, M.L. Ogilvie, R.L. Bell, K. Barsuhn, and J.P. Peters. (1992). Prevention of acute acidosis and enhancement offeed intake in the bovine by Megasphaera elsdenii 407A.J. Anim. Sci. 70: (Suppl. 1):310 (Abstr.).

Russell, J.B. (2002). Rumen Microbiology and Its Role in Ruminant Nutrition. Russell, J.B. (ed.). Ithaca, NY. 121 p.

Schingoethe, D.J, K.N. Linke, K.F. Kalscheur, A.R. Hippen, D.R. Rennich, and I. Yoon. (2004). Feed efficiency of mid-lactation dairy cows fed yeast culture during summer. J. Dairy Sci. 87: 4178-4181.

Shi, W., C.E. Knoblock, I. Yoon, and M. Oba. (2019). Effects of supplementing a Saccharomyces cerevisiaefermentation product during the transition period on rumen fermentation of dairy cows fed fresh diets differing in starchcontent. J. Dairy Sci.102:9943-9955.

Shwartz, G., M.L. Rhoads, M.J. VanBaale, R.P. Rhoads, and L.H. Baumgard. (2009). Effects of a supplemental yeast culture on heat-stressed lactating Holstein cows. J. Dairy Sci. 92:935–942.

Söllinger, A., A.T. Tveit, M. Poulsen, S.J. Noel, M. Bengtsson, J. Bernhardt, A.L. Frydendahl Hellwing, P. Lund, K. Riedel, C. Schleper, O. Højberg, and T. Urich. ( 2018). Holistic assessment of rumen microbiome dynamics through quantitative metatranscriptomics reveals multifunctional redundancy during key steps of anaerobic feed degradation. mSystems 3: e00038-18.

Soto, L.P., L.S. Frizzo, M.L. Signorini, M.V. Zbrun, L. Lavari, E. Bertozzi, G.J. Sequeira, and M.R. Rosmini. ( 2015). Fecal culturable microbiota, growth and clinical parameters of calves supplemented with lactic acid bacteria and lactose prior and during experimental infection withSalmonellaDublin DSPV 595T. Arch. Med. Vet. 47: 237-244.

Society of Toxicology (SQT). (2003). The safety of genetically modified foods produced through biotechnology. Report of the Society of Toxicology. Toxicol. Sci. 71:2-8.

Steinfeld, H., P. Gerber, T. Wassenaar, V. Castel, M. Rosales, and C. de Haan. (2006). Livestock’s Long Shadow: Environmental Issues and Options. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy.

Thi Huyen N, N.T. Tuyet Le, and B.Q. Tuan. (2019). Fermenting rice straw with the fungus Pleurotus eryngiiincreased the content of crude protein and the digestibility of the straw. Livestock Res. Rural DEV. Volume 31, Article 25.

Thi Huyen, N.T., B.Q. Tuan, N.X. Nghien, N.T. Bich Thuy, and N.T. Tuyet Le. (2019). Effect of using fungal treated rice straw in sheep diet on nutrients digestibility and microbial protein synthesis. Asian J. Anim. Sci. 13: 1-7.

Thieszen, J., C.L. Van Bibber, J.E. Axman, and J.S. Drouillard. (2015) "Lactipro (Megasphaera elsdenii) increases ruminal pH and alters volatile fatty acids and lactate during transition to an 80% concentrate diet," Kansas Agricultural Experiment Station Research.Reports: Vol. 1: Iss. 1.

Tirado-González, D.N., L.A. Miranda-Romero, A. Ruíz-Flores, S.E. Medina-Cuéllar, R. Ramírez-Valverde, and G.Tirado-Estrada. (2018). Meta-analysis: effects of exogenous fibrolytic enzymes in ruminant diets. J. Appl. Animal Research. 46:771-783.

Trejo-López, T., A. Zepeda-Bastida, J. Franco-Fernández, S. Soto-Simental, D. Ojeda-Ramírez, M. Ayala-Martínez. (2017). Uso de extracto enzimático de Pleurotus ostreatussobre los parámetros productivos de cabras. Abanico Vet. 7 (2).

Tu, Y., S. Rochfort, Z. Liu, Y. Ran, M. Griffith, P. Badenhorst, G. V. Louie, M.E. Bowman, K. F. Smith, J.P. Noel, A. Mouradov, and G. Spangenberg. (2010). Functional analyses of caffeic acid O-methyltransferase and cinnamoyl-CoA-reductase genes from perennial ryegrass (Lolium perenne). The Plant Cell. 10:3357-3373.

Wallace, R.J. (1992). Rumen microbiology, biotechnology and ruminant nutrition: The application of research findings to a complex microbial ecosystem. FEMS Microbiol. Lett. 100:529-534.

Wallace, R.J., G. Sasson, P.C. Garnsworthy, I. Tapio, E. Gregson, P. Bani, P. Huhtanen, A.R. Bayat, F. Strozzi, F. Biscarini, T.J. Snelling, N. Saunders, S.L. Potterton, J. Craigon, A. Minuti, E. Trevisi, M.L. Callegari, F.P. Cappelli, E.H. Cabezas-Garcia, J. Vilkki, C. Pinares-Patino, K.O. Fliegerova, J. Mrazek, H. Sechovcova, J. Kopecny, A. Bonin, F. Boyer, P. Taberlet, F. Kokou, E. Halperin, J. L. Williams, K.J. Shingfield, and I. Mizrahi. (2019). A heritable subset of the core rumen microbiome dictates dairy cow productivity and emissions. Sci. Adv. 5, eaav8391.

Wang, Z.Y., X.D. Ye, J. Nagel, I. Potrykus, and G. Spangenberg. (2001). Expression of a sulphur-rich sunflower albumin gene in transgenic tall fescue (Festuca arundinacea) plants. Plant Cell Reports. 20:213-219.

White, B.A., R.I. Mackie, and K.C. Doerner. (1993). Enzymatic hydrolysis of forage cell walls. In: Jung, H.G., D.R. Buxton, R.D. Hatfield, and J. Ralph (eds.). Forage Cell Wall Structure and Digestibility. ASA-CSSA-ASSA, Madison, Wi. pp. 455-484.

Yasuda, K., S. Hashikawa, H. Sakamoto, Y. Tomita, S. Shibata, and T. Fukata. (2007). A new synbiotic consisiting of lactobacillus caseisubsp casei and dextran improves milk production in Holstein dairy cows. J.V. Med. Sci. 69:205-208.

Ye, X., X. Wu, H. Zhao, M. Frehner, J. Nösberger, I. Potrykus, and G. Spangenberg. (2001). Altered fructan accumulation in transgenicLolium multiflorumplants expressing aBacillus subtilis sacBgene. Plant Cell Reports. 20:205-212.

Younts-Dahl, S.M., M.L. Galyean, G.H. Lonergan, N.A. Elam, N., and M. Brashears. (2004). Dietary supplementation with Lactobacillus-Propionibacterium-based direct-fed with microbials and prevalence of Escherichia coliO157 in beef feedlot cattle and on hides at harvest. J. Food Prot. 67:889-893.

Zhu, W., Z. Wei, N. Xu, F. Yang, I. Yoon, Y. Chung, J. Liu, and J. Wang. (2017). Effects of Saccharomyces cerevisiae fermentation products on performance and rumen fermentation and microbiota in dairy cows fed a diet containing low quality forage J. Anim. Sci. Biotechnol. 8:36.

Publicado

2020-10-06

Cómo citar

Márquez Araque, A. T. (2020). Algunas aplicaciones de la biotecnología en nutrición de rumiantes. Agroindustria, Sociedad Y Ambiente, 1(14), 125-157. Recuperado a partir de https://revistas.uclave.org/index.php/asa/article/view/2836