Signaling of insulin secretion by pancreatic β cell. A review

Authors

  • Ana Corro Universidad Centroccidental Lisandro Alvarado, Venezuela
  • Iraima Medina Universidad Centroccidental Lisandro Alvarado, Venezuela
  • Nyurky Matheus Universidad Centroccidental Lisandro Alvarado, Venezuela

Keywords:

Insulin, MCF, oxidative stress

Abstract

Substances such as glucose, free fatty acids and amino acids are metabolized in the β cell when their intracellular concentrations reach certain levels to provide regulatory metabolic coupling factors (R-MCF) and effector (E-FCM). The R-MCF (eg, citrate, NADH/NAD+, malonyl-CoA, GTP, acyl compounds CoA long chain, glutamate, adenine nucleotides), directly or indirectly improve the production of E-MCF (eg, ATP, cAMP, monoacylglycerol, NADPH, ROS, acyl-CoA short-chain compounds), which have a direct impact on the exocytosis of insulin granules. The E-MCF activate the final components of the machinery of exocytosis, including the K+ATP/SUR1/Ca2+, Munc13-1 channel, among others, initiating insulin release. However, in order to prevent excessive secretion of insulin, β cells are also equipped with mechanisms that control excessive production of R-MCF and MCF-E. These mechanisms include metabolic pathways which act as negative modulators (AMPK, palmitoiltransferasa I carnitine, glucose-6-phosphatase, and uncoupling proteins 2, which decreases the generation of R-MCF, and signals controlling the levels of E-MCF. Thus, knowledge of some update signaling pathways involved in insulin secretion is important to better understand the pathogenesis of type 2 diabetes mellitus, where, in addition, oxidative stress plays a significant role. Finally it is considered, an important research area as it can generate new insights into the molecular pathogenesis of hyperglycemia and identify pharmacological targets for treatment and/or prevention of long-term diabetic complications.

Downloads

Download data is not yet available.

References

[1] Ashcroft FM, Rorsman P. Diabetes mellitus and the beta cell: the last ten years. Cell 2012; 148:1160-1171.
[2] Nolan CJ, Damm P, Prentki M. Type 2 diabetes across generations: From pathophysiology to prevention and management. Lancet 2011; 378:169-181.
[3] Nolan CJ, Prentki M. The islet beta-cell: fuel responsiveand vulnerable. Trends Endocrinol Metab 2008; 19: 285-291 (Abstract).
[4] Nolan CJ, Madiraju MS, Delghingaro-Augusto V, Peyot ML, Prentki M. Fatty acid signaling in the beta-cell and insulin secretion. Diabetes 2006; 5:S16-S23.
[5] Zou C, Gon GY, Liang J. Metabolic signaling of insulin secretion by pancreatic β-cell and its derangement in type 2 diabetes. Eur Rev Med Pharmacol Sc 2014; 18:2215-2227.
[6] Matschinsky FM. A lesson in metabolic regulationinspired by the glucokinase glucose sensor paradigm. Diabetes 1996; 45:223-241. (Abstract)
[7] Prentki M. New insights into pancreatic beta-cell metabolic signaling in insulin secretion. Eur J Endocrinol 1996; 134:272-286. (Abstract)
[8] Peyot ML, Gray JP, Lamontagne J, Smith PJ, Holz GG, Madiraju SR et al. Glucagonlike peptide-1 induced signaling and insulin secretion do not drive fuel and energy metabolism in primary rodent pancreatic beta-cells. PLoS One 2009; 4:e6221.
[9] Nichols CG, Remedi MS. The diabetic beta-cell: hyperstimulated vs. hyperexcited. Diabetes Obes Metab 2012; 14(Suppl 3):129-135.
[10] Schyr-Ben-Haroush R, Hija A, Stolovich-Rain M, Dadon D, Granot Z, Ben-Hur V et al. Control of pancreatic beta cell regeneration by glucose metabolism. Cell Metab 2011; 13:440-449.
[11] Prentki M, Matschinsky FM, Madiraju SR. Metabolic signaling in fuel-induced insulin secretion. Cell Metab 2013; 18:162-185.
[12] Macdonald MJ. Feasibility of a mitochondrial pyruvate malate shuttle in pancreatic islets. Further implication of cytosolic NADPH in insulin secretion. J Biol Chem 1995; 270:20051-20058.
[13] Schuit F, De Vos A, Farfari S, Moens K, Pipeleers D, Brun T M et al. Metabolic fate of glucose in purified islet cells. Glucose-regulated anaplerosis in ß-cells. J Biol Chem 1997; 272:18572-18579.
[14] Srinivasan M, Choi CS, Ghoshal P, Pliss L, Pandya JD, Hill D, et al. {beta}-Cell-specific pyruvate dehydrogenase deficiency impairs glucose- stimulated insulin secretion. Am J Physiol Endocrinol Metab 2010; 299:E910-E917.
[15] Cline GW, Lepine RL, Papas KK, Kibbey RG, Shulman GI. 13c Nmr isotopomer analysis of anaplerotic pathways in INS-1 cells. J Biol Chem 2004; 279:44370-44375.
[16] Farfari S, Schulz V, Corkey B, Prentki M. Glucoseregulated anaplerosis and cataplerosis in pancreatic beta-cells: possible implication of a pyruvate/ citrate shuttle in insulin secretion. Diabetes 2000; 49:718-726.
[17] Hasan NM, Longacre MJ, Stoker SW, Boonsaen T, Jitrapakdee S, Kendrick MA et al. Impaired anaplerosis and insulin secretion in insulinoma cells caused by small interfering RNA-mediated suppression of pyruvate carboxylase. J Biol Chem 2008; 283:28048-28059.
[18] Macdonald MJ, Longacre MJ, Langberg EC, Tibell A, Kendrick MA, Fukao T et al. Decreased levels of metabolic enzymes in pancreatic islets of patients with type 2 diabetes. Diabetologia 2009; 52:1087-1091.
[19] Maechler P, Li N, Casimir M, Vetterli L, Frigerio F, Brun T. Role of mitochondria in beta-cell function and dysfunction. Adv Exp Med Biol 2010; 654:193-216.
[20] Stanley CA. Two genetic forms of hyperinsulinemic hypoglycemia caused by dysregulation of glutamate dehydrogenase. Neurochem Int 2011; 59:465-472.
[21] Prentki M, Madiraju SR. Glycerolipid metabolism and signaling in health and disease. Endocr Rev 2008; 29:647-676.
[22] Yaney GC, Corkey BE. Fatty acid metabolism and insulin secretion in pancreatic beta cells. Diabetologia 2003; 46:1297-1312.
[23] Herrero L, Rubi B, Sebastian D, Serra D, Asins G, Maechler P et al. Alteration of the malonyl-CoA/carnitine palmitoyltransferase I interaction in the beta-cell impairs glucose-induced insulin secretion. Diabetes 2005; 54:462-471.
[24] Roduit R, Nolan C, Alarcon C, Moore P, Barbeau A, Delghingaro-Augusto V et al. A role for the malonyl-CoA/long-chain acyl-CoA pathway of lipid signaling in the regulation of insulin secretion in response to both fuel and nonfuel stimuli. Diabetes 2004; 53:1007-1019.
[25] Antinozzi PA, Segall L, Prentki M, Mcgarry JD, Newgard CB. Molecular or pharmacologic perturbation of the link between glucose and lipid metabolism is without effect on glucose-stimulated insulin secretion. J Biol Chem 1998; 273:16146-16154.
[26] Schulze Du, Dufer M, Wieringa B, Krippeit-Drews P, Drews G. An adenylate kinase is involved in KATP channel regulation of mouse pancreatic beta cells. Diabetologia 2007; 50:2126-2134.
[27] Drews G, Krippeit-Drews P, Dufer M. Electrophysiology of islet cells. Adv Exp Med Biol 2010; 654:115-163.
[28] Ruderman N, Prentki M. AMP kinase and malonyl- CoA: targets for therapy of the metabolic syndrome. Nat Rev Drug Discov 2004; 3:340-351.
[29] Prentki M, Madiraju SR. Glycerolipid/free fatty acid cycle and islet beta-cell function in health, obesity and diabetes. Mol Cell Endocrinol 2012; 353:88-100.
[30] Lamontagne J, Pepin E, Peyot ML, Joly E, Ruderman NB, Poitout V et al. Pioglitazone acutely reduces insulin secretion and causes metabolic deceleration of the pancreatic beta-cell at submaximal glucose concentrations. Endocrinology 2009; 150:3465-3474.
[31] Fu A, Eberhard CE, Screaton RA. Role of AMPK in pancreatic beta cell function. Mol Cell Endocrinol 2013; 366:127-134
[32] Nolan CJ, Leahy JL, Delghingaro-Augusto V, Moibi J, Soni K, Peyot ML et al. Beta-cell compensation for insulin resistance in Zucker fatty rats: increased lipolysis and fatty acid signalling. Diabetologia 2006 49:2120-2130.
[33] Peyot ML, Nolan CJ, Soni K, Joly E, Lussier R, Corkey BE et al. Hormone-sensitive lipase has a role in lipid signaling for insulin secretion but is nonessential for the incretin action of glucagon-like peptide 1. Diabetes 2004; 53:1733-1742.
[34] Mulder H, Yang S, Winzell MS, Holm C, Ahren B. Inhibition of lipase activity and lipolysis in rat islets reduces insulin secretion. Diabetes 2004; 53:122-128.
[35] Bratanova-Tochkova TK, Cheng H, Daniel S, Gunawardana S, Liu YJ, Mulvaney-Musa J. et al. Triggering and augmentation mechanisms, granule pools, and biphasic insulin secretion. Diabetes 2002; 51 (Suppl. 1):S83-S90.
[36] Gonzalo S, Linder ME. SNAP-25 palmitoylation and plasma membrane targeting require a functional secretory pathway. Mol Biol Cell 1998; 9:585-597.
[37] Chapman ER, Blasi J, An S, Brose N, Johnston PA, Sudhof TC, Jahn R. Fatty acylation of synaptotagmin in PC12 cells and synaptosomes. Biochem Biophys Res Commun 1996; 225:326-332.
[38] Rhee JS, Betz A, Pyott S, Reim K, Varoqueaux F, Augustin I. Beta phorbol ester- and diacylglycerol-induced augmentation of transmitter release is mediated by Munc13s and not by PKCs. Cell 2002; 108:121-133.
[39] Kwan EP, Xie L, Sheu L, Nolan CJ, Prentki M, Betz A et al. Munc13-1 deficiency reduces insulin secretion and causes abnormal glucose tolerance. Diabetes 2006; 55:1421-1429.
[40] Brownlee M. A radical explanation for glucose-induced beta cell dysfunction. J Clin Invest 2003; 112:1788-1790.
[41] Krauss S, Zhang CY, Scorrano L, Dalgaard LT, St-Pierre J, Grey ST et al. Superoxide-mediated activation of uncoupling protein 2 causes pancreatic beta cell dysfunction. J Clin Invest 2003; 112:1831-1842.
[42 ]Seino S, Shibasaki T. PKA-dependent and PKAindependent pathways for cAMP-regulated exocytosis. Physiol Rev 2005; 85:1303-1342.
[43] Safayhi H, Haase H, Kramer U. L-type calcium channels in insulin-secreting cells: biochemical characterization and phosphorylation in RINm5F cells. Mol Endocrinol 1997; 11:619-629.
[44] Thorens B, Deriaz N, Bosco D. Protein kinase Adependent phosphorylation of GLUT2 in pancreatic β cells. J Biol Chem 1996; 271:8075-8081.
[45] Sugawara K, Shibasaki T, Mizoguchi A, Saito T, Seino S. Rab11 and its effector Rip11 participate in regulation of insulin granule exocytosis. Genes Cells 2009; 14:445-456.
[46] Seino S. Cell signalling in insulin secretion: the molecular targets of ATP, cAMP and sulfonylurea. Diabetología 2012; 55:2096-2108.
[47] De Rooij J, Rehmann H, Van Triest M, Cool RH, Wittinghofer A, Bos JL. Mechanism of regulation of the Epac family of cAMP-dependent RapGEFs. J Biol Chem 2000; 275:20829-20836.
[48]De Rooij J, Zwartkruis FJ, Verheijen MH. Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 1998; 396:474-477.
[49] Kawasaki H, Springett GM, Mochizuki N. A family of cAMP-binding proteins that directly activate Rap1. Science 1998; 282:2275-2279.
[50] Gloerich M, Bos JL. Epac: defining a new mechanism for cAMP action. Annu Rev Pharmacol Toxicol 2010; 50:355-375.
[51] Li Y, Asuri S, Rebhun JF, Castro AF, Paranavitana NC, Quilliam LA. The RAP1 guanine nucleotide exchange factor Epac2 couples cyclic AMP and Ras signals at the plasma membrane. J Biol Chem 2006; 281:2506-2514.
[52] Liu C, Takahashi M, Li Y. Ras is required for the cyclic AMP-dependent activation of Rap1 via Epac2. Mol Cell Biol 2008; 28:7109-7125.
[53] Niimura M, Miki T, Shibasaki T, Fujimoto W, Iwanaga T, Seino S. Critical role of the N-terminal cyclic AMP-bindingdomain of Epac2 in its subcellular localization and function. J Cell Physiol 2009; 219:652-658.
[54] Shibasaki T, Takahashi H, Miki T. Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP. Proc Natl Acad Sci USA 2007; 104:19333-19338.
[56] Yasuda T, Shibasaki T, Minami K. Rim2α determines docking and priming states in insulin granule exocytosis. Cell Metab 2010; 12:117-129.
[57] Leech CA, Dzhura I, Chepurny OG. Molecular physiology of glucagon-like peptide-1 insulin secretagogue action in pancreatic β cells. Prog Biophys Mol Biol 2011; 107:236-247.
[58] Lopes P, Oliveira SM, Soares Fortunato J. Stress oxidativo e seus efeitos na insulino-resistência e disfunção das células ß-pancreáticas Relação com as complicações da diabetes mellitus tipo 2. Acta Med Port 2008; 21:293-302.
[59] Rösen P, Nawroth PP, King G, Möller W, Tritschler HJ, Packer L. The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of a Congress Series sponsored by UNESCO-MCBN, the American Diabetes Association and the German Diabetes Society. Diabetes/Metabol Res Rev 2001; 17:189-212.
[60] Brownlee M: Biochemistry and molecular cell biology ofdiabetic complications. Nature 2001; 414:813-820.
[61] Evans JL, Golfine ID, Maddux BA, Grodsky GM. Are oxidative stress-activated signaling pathways mediators of insulin resistance and β-cell dysfunction? Diabetes 2003; 52:1-8.
[62] Lenzen S, Drinkgern J, Tiedge M: Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Rad Biol Med. 1996; 20:463-6.
[63] Pi J, Zhang Q, Fua J, Woods C, Houa Y, Corkey BE et al. ROS signaling, oxidative stress and Nrf2 in pancreatic beta-cell function. Toxicol Appl Pharmacol. 2010; 244(1):77-83.
[64] Brand MD, Affourtit C, Esteves TC, Green K, Lambert AJ, Miwa S et al. Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med 2004; 37:755-767.
[65] Jezek P, Zackova M, Ruzicka M, Skobisova E, Jaburek M. Mitochondrial uncoupling proteins-facts and fantasies. Physiol Res 2004; 53(Suppl 1):S199-S211.
[66] Ricquier D, Bouillaud F. The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP. Biochem J 2000; 345(Pt 2):161-179.
[67] Rousset S, Alves-Guerra MC, Mozo J, Miroux B, Cassard-Doulcier AM, Bouillaud F et al. The biology of mitochondrial uncoupling proteins. Diabetes 2004; 53(Suppl 1):S130-S135.
[68] Echtay KS, Roussel D, St-Pierre J, Jekabsons MB, Cadenas S, Stuart JA et al. Superoxide activates mitochondrial uncoupling proteins. Nature 2002; 415:96-99.
[69] Ruzicka M, Skobisova E, Dlaskova A, Santorova J, Smolkova K, Spacek T et al. Recruitment of mitochondrial uncoupling protein UCP2 after lipopolysaccharide induction. Int J Biochem Cell Biol 2005; 37:809-821.
[70] Krauss S, Zhang CY, Scorrano L, Dalgaard LT, St-Pierre J, Grey ST, Lowell BB. Superoxide-mediated activation of uncoupling protein 2 causes pancreatic beta cell dysfunction. J Clin Invest 2003; 112:1831-1842.
[71] Horimoto M, Fulop P, Derdak Z, Wands JR, Baffy G. Uncoupling protein-2 deficiency promotes oxidant stress and delays liver regeneration in mice. Hepatology 2004; 39:386-392.
[72] Bai Y, Onuma H, Bai X, Medvedev AV, Misukonis M, Weinberg JB et al. Persistent nuclear factor-kappa B activation in Ucp2−/− mice leads to enhanced nitric oxide and inflammatory cytokine production. J Biol Chem 2005; 280:19062-19069.
[73] Ryu JW, Hong KH, Maeng JH, Kim JB, Ko J, Park JY, Lee KU, Hong MK, Park SW, Kim YH, Han KH. Overexpression of uncoupling protein 2 in THP1 monocytes inhibits beta2 integrin-mediated firm adhesion and transendothelial migration. Arterioscler Thromb Vasc Biol 2004; 24:864-870.
[74] Giugliano D, Ceriello A, Paolisso G: Diabetes mellitus, hypertension, and cardiovascular disease: which role for oxidative stress? Metabolism 1995; 44:363-368.
[75] Hamilton SJ, Chew GT, Watts GF. Therapeutic regulation of endothelial dysfunction in type 2 diabetes mellitus. Diab Vasc Dis Res 2007; 4:89-102.
[76] Ceriello A, Motz E. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol 2004; 24:816-823.
[77] Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000; 404:787-790.
[78] Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Oxidative stress and stress-activated signaling pathways: A unifying hypothesis of type 2 Diabetes. Endocr Rev 2002; 23:599-622.
[79] Barnes PJ, Karin M. Nuclear factor-kB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 1997; 336:1066-1071.
[80] Jia L, Xing J, Ding Y, Shen Y, Shi X. Hyperuricemia causes pancreatic b cell death and dysfunction through NF-kB signaling pathway. PLoS ONE 2013; 8(10): e78284.
[81] Ho FM, Liu SH, Liau CS, Huang PJ, Lin-Shiau SY. High glucose-induced apoptosis in human endothelial cells is mediated by sequential activations of c-Jun NH(2)-terminal kinase and caspase-3. Circulation 2000; 101:2618-2624.
[82] Begum VS. MKP-1 expression by blocking iNOS via p38 MAPK activation. Am J Physiol 2000; 278:81-91.
[83] Lingling C, Chunyan L, Jianfeng G, Zhiwen X, Lawrence W.C, Damien JK et al. Inhibition of Miro1 disturbs mitophagy and pancreatic β-cell function interfering insulin release via IRS-Akt-Foxo1 in diabetes. Oncotarget 2017; 8(53):90693-90705.
[84] Liu S, Li X, Wu Y, Duan R, Zhang J, Du F, Zhang Q et al. Effects of vaspin on pancreatic β cell secretion via PI3K/Akt and NF-κB signaling pathways.PloS ONE 2017; 12(12):e0189722.

Published

2018-05-29

How to Cite

Corro, A., Medina, I., & Matheus, N. (2018). Signaling of insulin secretion by pancreatic β cell. A review. Gaceta De Ciencias Veterinarias, 22(2), 53-62. Retrieved from https://revistas.uclave.org/index.php/gcv/article/view/531

Issue

Section

Review article