Señalización de la secreción de insulina por las células beta del páncreas. Una revisión

Autores/as

  • Ana Corro Universidad Centroccidental Lisandro Alvarado, Venezuela
  • Iraima Medina Universidad Centroccidental Lisandro Alvarado, Venezuela
  • Nyurky Matheus Universidad Centroccidental Lisandro Alvarado, Venezuela

Palabras clave:

Insulina, MCF, estrés oxidativo

Resumen

Sustancias como la glucosa, ácidos grasos libres y aminoácidos se metabolizan en la célula β cuando sus concentraciones intracelulares alcanzan determinados niveles para proporcionar factores de acoplamiento metabólicos reguladores (R- MCF) y efectores (E-MCF). Los R-MCF (por ejemplo, citrato, NADH/NAD+, malonil-CoA, GTP, compuestos acil CoA de cadena larga, glutamato, nucleótidos de adenina), directa o indirectamente mejoran la producción de E-MCF (por ejemplo, ATP, cAMP, monoacilglicerol, NADPH, ROS, compuestos acilo-CoA de cadena corta), que tienen un impacto directo sobre la exocitosis de los gránulos de insulina. Los E-MCF activan los componentes finales de la maquinaria de la exocitosis, incluyendo el canal K+ATP/SUR1/Ca2+, Munc13-1, entre otros., iniciando así la liberación de insulina. Ahora bien, con el fin de prevenir la secreción excesiva de insulina, las células β también están equipadas con mecanismos que controlan producción excesiva de R-MCF y E-MCF. Estos mecanismos incluyen vías metabólicas que actúan como moduladores negativos (AMPK, la carnitina palmitoiltransferasa I, glucosa-6-fosfatasa, y proteínas de desacoplamiento 2, que disminuyen la generación de R-MCF, y de señales que controlan los niveles de E-MCF. Así pues, actualizar el conocimiento de algunas vías de señalización involucradas en la secreción de insulina, resulta importante para comprender mejor la patogenia de la diabetes mellitus tipo 2, donde además, el estrés oxidativo juega un rol significativo. Finalmente se considera ésta, un área importante de investigación, ya que puede generar nuevos conocimientos en la patogénesis molecular de la hiperglucemia e identifica blancos farmacológicos para el tratamiento y/o prevención de complicaciones diabéticas a largo plazo.

Descargas

La descarga de datos todavía no está disponible.

Citas

[1] Ashcroft FM, Rorsman P. Diabetes mellitus and the beta cell: the last ten years. Cell 2012; 148:1160-1171.
[2] Nolan CJ, Damm P, Prentki M. Type 2 diabetes across generations: From pathophysiology to prevention and management. Lancet 2011; 378:169-181.
[3] Nolan CJ, Prentki M. The islet beta-cell: fuel responsiveand vulnerable. Trends Endocrinol Metab 2008; 19: 285-291 (Abstract).
[4] Nolan CJ, Madiraju MS, Delghingaro-Augusto V, Peyot ML, Prentki M. Fatty acid signaling in the beta-cell and insulin secretion. Diabetes 2006; 5:S16-S23.
[5] Zou C, Gon GY, Liang J. Metabolic signaling of insulin secretion by pancreatic β-cell and its derangement in type 2 diabetes. Eur Rev Med Pharmacol Sc 2014; 18:2215-2227.
[6] Matschinsky FM. A lesson in metabolic regulationinspired by the glucokinase glucose sensor paradigm. Diabetes 1996; 45:223-241. (Abstract)
[7] Prentki M. New insights into pancreatic beta-cell metabolic signaling in insulin secretion. Eur J Endocrinol 1996; 134:272-286. (Abstract)
[8] Peyot ML, Gray JP, Lamontagne J, Smith PJ, Holz GG, Madiraju SR et al. Glucagonlike peptide-1 induced signaling and insulin secretion do not drive fuel and energy metabolism in primary rodent pancreatic beta-cells. PLoS One 2009; 4:e6221.
[9] Nichols CG, Remedi MS. The diabetic beta-cell: hyperstimulated vs. hyperexcited. Diabetes Obes Metab 2012; 14(Suppl 3):129-135.
[10] Schyr-Ben-Haroush R, Hija A, Stolovich-Rain M, Dadon D, Granot Z, Ben-Hur V et al. Control of pancreatic beta cell regeneration by glucose metabolism. Cell Metab 2011; 13:440-449.
[11] Prentki M, Matschinsky FM, Madiraju SR. Metabolic signaling in fuel-induced insulin secretion. Cell Metab 2013; 18:162-185.
[12] Macdonald MJ. Feasibility of a mitochondrial pyruvate malate shuttle in pancreatic islets. Further implication of cytosolic NADPH in insulin secretion. J Biol Chem 1995; 270:20051-20058.
[13] Schuit F, De Vos A, Farfari S, Moens K, Pipeleers D, Brun T M et al. Metabolic fate of glucose in purified islet cells. Glucose-regulated anaplerosis in ß-cells. J Biol Chem 1997; 272:18572-18579.
[14] Srinivasan M, Choi CS, Ghoshal P, Pliss L, Pandya JD, Hill D, et al. {beta}-Cell-specific pyruvate dehydrogenase deficiency impairs glucose- stimulated insulin secretion. Am J Physiol Endocrinol Metab 2010; 299:E910-E917.
[15] Cline GW, Lepine RL, Papas KK, Kibbey RG, Shulman GI. 13c Nmr isotopomer analysis of anaplerotic pathways in INS-1 cells. J Biol Chem 2004; 279:44370-44375.
[16] Farfari S, Schulz V, Corkey B, Prentki M. Glucoseregulated anaplerosis and cataplerosis in pancreatic beta-cells: possible implication of a pyruvate/ citrate shuttle in insulin secretion. Diabetes 2000; 49:718-726.
[17] Hasan NM, Longacre MJ, Stoker SW, Boonsaen T, Jitrapakdee S, Kendrick MA et al. Impaired anaplerosis and insulin secretion in insulinoma cells caused by small interfering RNA-mediated suppression of pyruvate carboxylase. J Biol Chem 2008; 283:28048-28059.
[18] Macdonald MJ, Longacre MJ, Langberg EC, Tibell A, Kendrick MA, Fukao T et al. Decreased levels of metabolic enzymes in pancreatic islets of patients with type 2 diabetes. Diabetologia 2009; 52:1087-1091.
[19] Maechler P, Li N, Casimir M, Vetterli L, Frigerio F, Brun T. Role of mitochondria in beta-cell function and dysfunction. Adv Exp Med Biol 2010; 654:193-216.
[20] Stanley CA. Two genetic forms of hyperinsulinemic hypoglycemia caused by dysregulation of glutamate dehydrogenase. Neurochem Int 2011; 59:465-472.
[21] Prentki M, Madiraju SR. Glycerolipid metabolism and signaling in health and disease. Endocr Rev 2008; 29:647-676.
[22] Yaney GC, Corkey BE. Fatty acid metabolism and insulin secretion in pancreatic beta cells. Diabetologia 2003; 46:1297-1312.
[23] Herrero L, Rubi B, Sebastian D, Serra D, Asins G, Maechler P et al. Alteration of the malonyl-CoA/carnitine palmitoyltransferase I interaction in the beta-cell impairs glucose-induced insulin secretion. Diabetes 2005; 54:462-471.
[24] Roduit R, Nolan C, Alarcon C, Moore P, Barbeau A, Delghingaro-Augusto V et al. A role for the malonyl-CoA/long-chain acyl-CoA pathway of lipid signaling in the regulation of insulin secretion in response to both fuel and nonfuel stimuli. Diabetes 2004; 53:1007-1019.
[25] Antinozzi PA, Segall L, Prentki M, Mcgarry JD, Newgard CB. Molecular or pharmacologic perturbation of the link between glucose and lipid metabolism is without effect on glucose-stimulated insulin secretion. J Biol Chem 1998; 273:16146-16154.
[26] Schulze Du, Dufer M, Wieringa B, Krippeit-Drews P, Drews G. An adenylate kinase is involved in KATP channel regulation of mouse pancreatic beta cells. Diabetologia 2007; 50:2126-2134.
[27] Drews G, Krippeit-Drews P, Dufer M. Electrophysiology of islet cells. Adv Exp Med Biol 2010; 654:115-163.
[28] Ruderman N, Prentki M. AMP kinase and malonyl- CoA: targets for therapy of the metabolic syndrome. Nat Rev Drug Discov 2004; 3:340-351.
[29] Prentki M, Madiraju SR. Glycerolipid/free fatty acid cycle and islet beta-cell function in health, obesity and diabetes. Mol Cell Endocrinol 2012; 353:88-100.
[30] Lamontagne J, Pepin E, Peyot ML, Joly E, Ruderman NB, Poitout V et al. Pioglitazone acutely reduces insulin secretion and causes metabolic deceleration of the pancreatic beta-cell at submaximal glucose concentrations. Endocrinology 2009; 150:3465-3474.
[31] Fu A, Eberhard CE, Screaton RA. Role of AMPK in pancreatic beta cell function. Mol Cell Endocrinol 2013; 366:127-134
[32] Nolan CJ, Leahy JL, Delghingaro-Augusto V, Moibi J, Soni K, Peyot ML et al. Beta-cell compensation for insulin resistance in Zucker fatty rats: increased lipolysis and fatty acid signalling. Diabetologia 2006 49:2120-2130.
[33] Peyot ML, Nolan CJ, Soni K, Joly E, Lussier R, Corkey BE et al. Hormone-sensitive lipase has a role in lipid signaling for insulin secretion but is nonessential for the incretin action of glucagon-like peptide 1. Diabetes 2004; 53:1733-1742.
[34] Mulder H, Yang S, Winzell MS, Holm C, Ahren B. Inhibition of lipase activity and lipolysis in rat islets reduces insulin secretion. Diabetes 2004; 53:122-128.
[35] Bratanova-Tochkova TK, Cheng H, Daniel S, Gunawardana S, Liu YJ, Mulvaney-Musa J. et al. Triggering and augmentation mechanisms, granule pools, and biphasic insulin secretion. Diabetes 2002; 51 (Suppl. 1):S83-S90.
[36] Gonzalo S, Linder ME. SNAP-25 palmitoylation and plasma membrane targeting require a functional secretory pathway. Mol Biol Cell 1998; 9:585-597.
[37] Chapman ER, Blasi J, An S, Brose N, Johnston PA, Sudhof TC, Jahn R. Fatty acylation of synaptotagmin in PC12 cells and synaptosomes. Biochem Biophys Res Commun 1996; 225:326-332.
[38] Rhee JS, Betz A, Pyott S, Reim K, Varoqueaux F, Augustin I. Beta phorbol ester- and diacylglycerol-induced augmentation of transmitter release is mediated by Munc13s and not by PKCs. Cell 2002; 108:121-133.
[39] Kwan EP, Xie L, Sheu L, Nolan CJ, Prentki M, Betz A et al. Munc13-1 deficiency reduces insulin secretion and causes abnormal glucose tolerance. Diabetes 2006; 55:1421-1429.
[40] Brownlee M. A radical explanation for glucose-induced beta cell dysfunction. J Clin Invest 2003; 112:1788-1790.
[41] Krauss S, Zhang CY, Scorrano L, Dalgaard LT, St-Pierre J, Grey ST et al. Superoxide-mediated activation of uncoupling protein 2 causes pancreatic beta cell dysfunction. J Clin Invest 2003; 112:1831-1842.
[42 ]Seino S, Shibasaki T. PKA-dependent and PKAindependent pathways for cAMP-regulated exocytosis. Physiol Rev 2005; 85:1303-1342.
[43] Safayhi H, Haase H, Kramer U. L-type calcium channels in insulin-secreting cells: biochemical characterization and phosphorylation in RINm5F cells. Mol Endocrinol 1997; 11:619-629.
[44] Thorens B, Deriaz N, Bosco D. Protein kinase Adependent phosphorylation of GLUT2 in pancreatic β cells. J Biol Chem 1996; 271:8075-8081.
[45] Sugawara K, Shibasaki T, Mizoguchi A, Saito T, Seino S. Rab11 and its effector Rip11 participate in regulation of insulin granule exocytosis. Genes Cells 2009; 14:445-456.
[46] Seino S. Cell signalling in insulin secretion: the molecular targets of ATP, cAMP and sulfonylurea. Diabetología 2012; 55:2096-2108.
[47] De Rooij J, Rehmann H, Van Triest M, Cool RH, Wittinghofer A, Bos JL. Mechanism of regulation of the Epac family of cAMP-dependent RapGEFs. J Biol Chem 2000; 275:20829-20836.
[48]De Rooij J, Zwartkruis FJ, Verheijen MH. Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 1998; 396:474-477.
[49] Kawasaki H, Springett GM, Mochizuki N. A family of cAMP-binding proteins that directly activate Rap1. Science 1998; 282:2275-2279.
[50] Gloerich M, Bos JL. Epac: defining a new mechanism for cAMP action. Annu Rev Pharmacol Toxicol 2010; 50:355-375.
[51] Li Y, Asuri S, Rebhun JF, Castro AF, Paranavitana NC, Quilliam LA. The RAP1 guanine nucleotide exchange factor Epac2 couples cyclic AMP and Ras signals at the plasma membrane. J Biol Chem 2006; 281:2506-2514.
[52] Liu C, Takahashi M, Li Y. Ras is required for the cyclic AMP-dependent activation of Rap1 via Epac2. Mol Cell Biol 2008; 28:7109-7125.
[53] Niimura M, Miki T, Shibasaki T, Fujimoto W, Iwanaga T, Seino S. Critical role of the N-terminal cyclic AMP-bindingdomain of Epac2 in its subcellular localization and function. J Cell Physiol 2009; 219:652-658.
[54] Shibasaki T, Takahashi H, Miki T. Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP. Proc Natl Acad Sci USA 2007; 104:19333-19338.
[56] Yasuda T, Shibasaki T, Minami K. Rim2α determines docking and priming states in insulin granule exocytosis. Cell Metab 2010; 12:117-129.
[57] Leech CA, Dzhura I, Chepurny OG. Molecular physiology of glucagon-like peptide-1 insulin secretagogue action in pancreatic β cells. Prog Biophys Mol Biol 2011; 107:236-247.
[58] Lopes P, Oliveira SM, Soares Fortunato J. Stress oxidativo e seus efeitos na insulino-resistência e disfunção das células ß-pancreáticas Relação com as complicações da diabetes mellitus tipo 2. Acta Med Port 2008; 21:293-302.
[59] Rösen P, Nawroth PP, King G, Möller W, Tritschler HJ, Packer L. The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of a Congress Series sponsored by UNESCO-MCBN, the American Diabetes Association and the German Diabetes Society. Diabetes/Metabol Res Rev 2001; 17:189-212.
[60] Brownlee M: Biochemistry and molecular cell biology ofdiabetic complications. Nature 2001; 414:813-820.
[61] Evans JL, Golfine ID, Maddux BA, Grodsky GM. Are oxidative stress-activated signaling pathways mediators of insulin resistance and β-cell dysfunction? Diabetes 2003; 52:1-8.
[62] Lenzen S, Drinkgern J, Tiedge M: Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Rad Biol Med. 1996; 20:463-6.
[63] Pi J, Zhang Q, Fua J, Woods C, Houa Y, Corkey BE et al. ROS signaling, oxidative stress and Nrf2 in pancreatic beta-cell function. Toxicol Appl Pharmacol. 2010; 244(1):77-83.
[64] Brand MD, Affourtit C, Esteves TC, Green K, Lambert AJ, Miwa S et al. Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med 2004; 37:755-767.
[65] Jezek P, Zackova M, Ruzicka M, Skobisova E, Jaburek M. Mitochondrial uncoupling proteins-facts and fantasies. Physiol Res 2004; 53(Suppl 1):S199-S211.
[66] Ricquier D, Bouillaud F. The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP. Biochem J 2000; 345(Pt 2):161-179.
[67] Rousset S, Alves-Guerra MC, Mozo J, Miroux B, Cassard-Doulcier AM, Bouillaud F et al. The biology of mitochondrial uncoupling proteins. Diabetes 2004; 53(Suppl 1):S130-S135.
[68] Echtay KS, Roussel D, St-Pierre J, Jekabsons MB, Cadenas S, Stuart JA et al. Superoxide activates mitochondrial uncoupling proteins. Nature 2002; 415:96-99.
[69] Ruzicka M, Skobisova E, Dlaskova A, Santorova J, Smolkova K, Spacek T et al. Recruitment of mitochondrial uncoupling protein UCP2 after lipopolysaccharide induction. Int J Biochem Cell Biol 2005; 37:809-821.
[70] Krauss S, Zhang CY, Scorrano L, Dalgaard LT, St-Pierre J, Grey ST, Lowell BB. Superoxide-mediated activation of uncoupling protein 2 causes pancreatic beta cell dysfunction. J Clin Invest 2003; 112:1831-1842.
[71] Horimoto M, Fulop P, Derdak Z, Wands JR, Baffy G. Uncoupling protein-2 deficiency promotes oxidant stress and delays liver regeneration in mice. Hepatology 2004; 39:386-392.
[72] Bai Y, Onuma H, Bai X, Medvedev AV, Misukonis M, Weinberg JB et al. Persistent nuclear factor-kappa B activation in Ucp2−/− mice leads to enhanced nitric oxide and inflammatory cytokine production. J Biol Chem 2005; 280:19062-19069.
[73] Ryu JW, Hong KH, Maeng JH, Kim JB, Ko J, Park JY, Lee KU, Hong MK, Park SW, Kim YH, Han KH. Overexpression of uncoupling protein 2 in THP1 monocytes inhibits beta2 integrin-mediated firm adhesion and transendothelial migration. Arterioscler Thromb Vasc Biol 2004; 24:864-870.
[74] Giugliano D, Ceriello A, Paolisso G: Diabetes mellitus, hypertension, and cardiovascular disease: which role for oxidative stress? Metabolism 1995; 44:363-368.
[75] Hamilton SJ, Chew GT, Watts GF. Therapeutic regulation of endothelial dysfunction in type 2 diabetes mellitus. Diab Vasc Dis Res 2007; 4:89-102.
[76] Ceriello A, Motz E. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol 2004; 24:816-823.
[77] Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000; 404:787-790.
[78] Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Oxidative stress and stress-activated signaling pathways: A unifying hypothesis of type 2 Diabetes. Endocr Rev 2002; 23:599-622.
[79] Barnes PJ, Karin M. Nuclear factor-kB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 1997; 336:1066-1071.
[80] Jia L, Xing J, Ding Y, Shen Y, Shi X. Hyperuricemia causes pancreatic b cell death and dysfunction through NF-kB signaling pathway. PLoS ONE 2013; 8(10): e78284.
[81] Ho FM, Liu SH, Liau CS, Huang PJ, Lin-Shiau SY. High glucose-induced apoptosis in human endothelial cells is mediated by sequential activations of c-Jun NH(2)-terminal kinase and caspase-3. Circulation 2000; 101:2618-2624.
[82] Begum VS. MKP-1 expression by blocking iNOS via p38 MAPK activation. Am J Physiol 2000; 278:81-91.
[83] Lingling C, Chunyan L, Jianfeng G, Zhiwen X, Lawrence W.C, Damien JK et al. Inhibition of Miro1 disturbs mitophagy and pancreatic β-cell function interfering insulin release via IRS-Akt-Foxo1 in diabetes. Oncotarget 2017; 8(53):90693-90705.
[84] Liu S, Li X, Wu Y, Duan R, Zhang J, Du F, Zhang Q et al. Effects of vaspin on pancreatic β cell secretion via PI3K/Akt and NF-κB signaling pathways.PloS ONE 2017; 12(12):e0189722.

Publicado

2018-05-29

Cómo citar

Corro, A., Medina, I., & Matheus, N. (2018). Señalización de la secreción de insulina por las células beta del páncreas. Una revisión. Gaceta De Ciencias Veterinarias, 22(2), 53-62. Recuperado a partir de https://revistas.uclave.org/index.php/gcv/article/view/531

Número

Sección

Artículo de revisión