Comportamiento sismo-resistente de tres edificios de mediana altura proyectados según las normas venezolanas

Autores/as

DOI:

https://doi.org/10.13140/RG.2.1.5031.7687

Palabras clave:

estructuras compuestas, modelos de daño, análisis dinámico

Resumen

Se presenta un estudio de la vulnerabilidad sísmica de tres modelos estructurales de mediana altura proyectados según la norma venezolana Covenin 1756-01. Los modelos tienen similares configuraciones en planta y en alturas de entrepiso; en la acción sísmica se utilizaron acelerogramas híbridos, compatibles con el espectro de diseño característico de la zona metropolitana Barquisimeto-Cabudare. El daño se evaluó mediante curvas de fragilidad e índices de daño, incluido el enfoque probabilista. Algunos modelos mostraron altas probabilidades de daño severo o colapso, sufriendo deformaciones laterales y degradaciones de rigidez significativas más allá de límites aceptables normativos, evidenciando que los desplazamientos relativos, y la rigidez son indicadores fundamentales del daño estructural. Se concluyó que para evaluar el comportamiento de los modelos estructurales analizados, sometidos a la acción sísmica probable, se requiere de un detallado estudio de los desplazamientos horizontales, particularmente de los desplazamientos relativos entre niveles, y que las previsiones de la norma venezolana podrían no ser suficientes para la evaluación del desempeño sísmico de estos modelos

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Ronald Ugel, Universidad Centroccidental Lisandro Alvarado. Venezuela

Doctor en Ingeniería Sísmica y Dinámica Estructural de la Universitat Politécnica de Catalunya, España. Adscrito al Departamento de Ingeniería Estructural, Decanato de Ingeniería Civil, Universidad Centroccidental Lisandro Alvarado. Venezuela. Correo: rugel@ucla.edu.ve

Reyes Indira Herrera, Universidad Centroccidental Lisandro Alvarado. Venezuela

Doctorando en Ingeniería Sísmica y Dinámica Estructural de la Universitat Politécnica de Catalunya, España; Especialista en Ingeniería Estructural de la Universidad Centroccidental Lisandro Alvarado. Venezuela. Correo: hreyes@ucla.edu.ve

Citas

[1] J. L. Alonso. “Vulnerabilidad sísmica de edificaciones”. Fondo Editorial SIDETUR, Octubre 2007. Caracas. Segunda edición. 2012.
[2] W. Li, Q. Li, W.Jiang y L. Jiang. “Seismic performance of composite reinforced concrete and steel moment frame structures–state-of-the-art”. Composites: Part B 42 (2011) 190–206. Doi.org/10.1016. 2011.
[3] R. Melchers. “Structural Reliability Analysis & Prediction”. Wiley Inc. New York, 2002.
[4] HAZUS-99. “Earthquake Loss Estimation Methodology”. Technical Manual Vol 1. Federal Emergency Management Agency (FEMA). Washington. 1999.
[5] Z. Milutinovic y G. Trendafolosky. “WP04 Vulnerability of current buildings”. RISK- UE Project. Bruselas, 2003.
[6] S. Freeman. “Development and use of capacity spectrum method”. Proceedings of 6th U.S. National Conference on Earthquake Engineering. 1998.
[7] ATC 40. “Improvement of nonlinear static seismic analysis procedures”. Applied Technology Council (ATC). Report No. FEMA-440, Washington, DC, 2005.
[8] D. Vamvatsikos y A. Cornell. “Incremental dynamic analysis”. Earthquake Engineering and Structural Dynamics 2002; 31:491–514. 2002.
[9] L. Pujades, Y. Vargas, A. Barbat y J. González. “Parametric model for capacity curves”. Bulletin of Earthquake Engineering. (Published online 13.sept. 2014). DOI 10.1007/s10518-014-9670-5. 32 p. 2014.
[10] COVENIN 1756:01. “Edificaciones sismo resistentes”. FondoNorma. Caracas. 2001.
[11] M. Schmitz, J.J. Hernández, C. Morales y otros. “Proyecto de Microzonificación Sísmica en las ciudades de Caracas y Barquisimeto”. FONACIT. Informe Técnico Final. Volumen 1. Caracas. FUNVISIS. 2009.
[12] F. López-Almansa, y A. Benavent. “Vulnerability Analysis of RC buildings located in moderate seismic regions”. Engineering Structures, Vol.46 pp 687-702. 2013.
[13] SEAOC. “Vision 2000. A framework for performance-based engineering”. Structural Engineers Association of California, Sacramento, CA. 1995.
[14] R. Ugel. “Vulnerabilidad sísmica en edificaciones porticadas compuestas de acero y hormigón armado”. Tesis Doctoral. Departamento de Ingeniería del Terreno, Cartográfica y Geofísica. Universidad Politécnica de Catalunya. Barcelona, España. 2015.
[15] R. Ugel, R. Herrera, A. Dorante y M. Machado. “Análisis y Respuesta Sismo- Resistente en Edificaciones Aporticadas Compuestas ubicadas en Barquisimeto”. Memorias del II Congreso Internacional de Ingeniería Estructural & Sismorresistente. Valencia, 2014
[16] COVENIN 2002-1988. “Criterios y Acciones Mínimas para el Proyecto de Edificaciones”. FondoNorma, Caracas.1988.
[17] C. Bhatt y R. Bento. “The extended adaptive capacity spectrum method for the seismic assessment of plan asymmetric buildings”. Earthquake Spectra. doi:10.1193/022112EQS048M. 2013
[18] R. Pinho, M. Marques, R. Monteiro y C. Casarotti. “Using the adaptive capacity spectrum method for seismic assessment of irregular frames”. In: Proceedings 5th European workshop on the seismic behaviour of irregular and complex structures, Italy. 2008
[19] COVENIN 1753-2006. “Proyecto y construcción de obras en concreto estructural”. FondoNorma. Caracas. 2006.
[20] M. Menegotto y P. Pinto. “Method of analysis for cyclically loaded R.C. plane frames including changes in geometry and non-elastic behaviour of elements under combined normal force and bending”. Symposium: Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads. Zurich, Switzerland, pp. 15-22. 1973.
[21] F. Filippou, E. Popov y V. Bertero. “Effects of Bond Deterioration on Hysteretic Behavior of Reinforced Concrete Joints”. Report EERC 83-19, Earthquake Engineering Research Center, University of California, Berkeley. 1983.
[22] J. Mander, N. Priestley y R. Park. “Observed stress-strain behavior of confined concrete”. Structural Engineering, ASCE, 114(8), 1827-1849. 1988.
[23] SEISMOSOFT. “SeismoStruct. A Computer Program for Static and Dynamic Nonlinear Analysis of Framed Structures”. Available from: http://www.seismosoft.com. 2014.
[24] S. Antoniou y R. Pinho. “Advantages and limitations of adaptive and non-adaptive force-based pushover procedures”. Jour. of Earthq. Engineering, Vol. 8 No. 4. pp 497/522. 2004.
[25] FEMA. National Earthquake Hazards Reduction Program. “Improvement of non linear static seismic analysis procedures”. Applied Technology Council (FEMA 440). ATC- 55 Project. 201 Redwood Shores Parkway, Suite 240 Redwood City, California, 2005.
[26] A. Mwafy y A. Elnashai. “Calibration of Force Reduction Factors of RC Buildings”. Journal of Earthquake Engineering, 6: 2, 239 - 273. 2002.
[27] V. Papanikolau y A. Elnashai. “Evaluation of conventional and adaptive pushover analysis I: Methodology”. Journal of Earthquake Engineering, 9: 6, 923- 941. 2005
[28] A. Chopra y R. Goel. “A modal pushover analysis procedure for estimating seismic demands for unsymmetric-plan buildings”. Earthquake Engineering and Structural Dynamics 2004; 33(8):903–927. 2004.
[29] PEER. NGA Database. “Pacific Earthquake Engineering Research Center”. CEE 227 – Earthquake Engineering. University of California. Berkeley. UC Regents. 2013.
[30] G. Calvi. “Alternative Choices and Criteria for Seismic Strengthening”. Proceedings in 15th World Conference Earthquake Engineering. Lisbon, Portugal. 2012.
[31] EUROPEAN COMMITTEE OF NORMALIZATION. “Design of structures for earthquake resistance—part 3: assessment and retrofitting of buildings. European Standard EN 1998–3 Eurocode 8”. Brussels, 2005.
[32] L. Pujades, A. Barbat y N. Lantada. “Evaluación del riesgo sísmico en zonas urbanas: desarrollo de escenarios”. Revista internacional de Ingeniería de Estructuras. Vol. 12, 1. 1 – 28. ISSN 1390-0315. ESPE, Quito – Ecuador. 2007.
[33] A. Ang, W. Kim y S. B. Kim. “Damage estimation of existing bridge structures”. Technical Report, Structural Engineering in Natural Hazards. Vol. II. John Wiley and Sons, New York. ASCE Structures Congress. Irivine. California. 1993.
[34] EUROPEAN COMMITTEE OF NORMALIZATION. “Eurocode 8: design of structures for earthquake resistance. Part 1: general rules, seismic actions and rules for buildings”. Brussels, 1998.
[35] C. Bermúdez. “Vulnerabilidad sísmica de edificios de acero”. Tesis Doctoral. Departamento de Ingeniería del Terreno, Cartográfica y Geofísica. Universidad Politécnica de Catalunya. España. 2010.
[36] M. Gunay y H. Sucuoglu. “An improvement to linear-elastic procedures for seismic performance assessment”. Earthquake Engineering and Structural Dynamics. Published online in Wiley InterScience. DOI: 10.1002/eqe.980. 2011.

Publicado

2016-01-15

Cómo citar

Ugel, R., & Herrera, R. I. (2016). Comportamiento sismo-resistente de tres edificios de mediana altura proyectados según las normas venezolanas. Gaceta Técnica, 14(1), 33-55. https://doi.org/10.13140/RG.2.1.5031.7687

Número

Sección

Artículos