Dam break hydrodinamic modelling experiencies, using multidimensional software
Keywords:
modelling, breach, dam, dam break, multidimensional simulationAbstract
Dams play a very important role in current water supply systems since many years ago. These structures involve huge retained volumes of water and sediments, whereby total or partial failure may lead to enormous material damage and/or human losses. Using numerical software during project stage for modeling failure scenarios such as dam breaching represents a powerful tool for risk assessment as they are capable to estimate the consequences of any eventual flooding due to dam failure. Hereby it is presented the results of two (2) two-dimensional overtopping dam breaching study cases located in Lara state, Venezuela which have been modeled with ISIS 2D and Delft3D respectively, by using different methods and resources on a theoretical and practical experiences basis, highlighting water behavior as flooding wave propagates downstream. As a conclusion of an exhaustive analysis, it is possible to asseverate about the feasibility of using the procedures and software previously described for dam breach modeling from the consistency of the obtained values and the model stability, standing out as a gateway to the key field of dam break hydrodynamic modeling which is an area that has been poorly explored in Latin-America.
Downloads
References
Barros, J., y Toro, M. (2004). Ecuaciones de caudal pico resultante de un rompimiento de presa. XVI Seminario Nacional de Hidráulica e Hidrología. Sociedad Colombiana de Ingenieros. Octubre, 2004.
Berezowsky, M. y Rios, F. (2012). Formación de Brecha de Ruptura de Presas: Estado del Arte. XXII Congreso Nacional de Hidráulica. Universidad Nacional Autónoma de México, Instituto de Ingeniería.
CH2M (2014). ISIS 2D. User Manual. Versión 3.7.
Davies, A. (1988). On formulating two-dimensional vertically integrated hydrodynamic numerical models with an enhanced representation of bed stress. Journal of Geophysical Research, 93 (C2): 1241-1263.
DELTARES (2014). Delft3D-FLOW. User Manual. Versión 3.15.33641.
Froehlich, D. (1995). Peak outflow from breached embankment dam. Journal of Water Resources Planning and Management. Pp. 90–97.
Froehlich, D. (2008). Embankment dam breach parameters and their uncertainties. Journal of Hydraulic Engineering. Vol. 134, No 12, Pp. 1708–1721.
Gerritsen, H. y otros. (2010). Validation Document Delft3D-FLOW; a software system for 3D flow simulations. WL | Delft Hydraulics. Validation Studies (Capitulo 3). Pág. 57-60.
Ludewig, A. y Prada, M. (2011). Evaluación de la Aplicabilidad de las Técnicas de Simulación Hidrológica Distribuida por medio del uso de la Plataforma SIG en la cuenca aportante al Embalse "Dos Cerritos". Tesis inédita de grado. Decanato de Ingeniería Civil. Universidad Centroccidental Lisandro Alvarado. Barquisimeto.
Macdonald, Th. y Langridge-Monopolis, J. (1984). Breaching Characteristics of Dam Failures. ASCE Journal of Hydraulic Engineering, vol. 110, no. 5, p. 567-586.
Marullo, C. (2015). Modelación de rotura de presas de tierra mediante un software de simulación hidráulica multidimensional. Tesis inédita de grado. Decanato de Ingeniería Civil. Universidad Centroccidental “Lisandro Alvarado”. Barquisimeto.
Ministerio del Poder Popular para Ecosocialismo, Hábitat y Vivienda (2008). Sistema Dos Cerritos. Zona de embalse. Curva de áreas y capacidades. Unidad de Batimetría, Dirección de Operación y Mantenimiento de Obras y Saneamiento Ambiental (DOMOSA). Abril, 2008. Autor.
Natale, E. (2009). Dam Break Risk Assessment in Baker Valley (Chilean Patagonia). Universitá di Pavia. Pag. 26.
Petrascheck, A. y Sydler, P. (1984). Routing of dam break floods. International Water Power and Dam Construction. 36, 29-32.
Rodríguez, L. y Rodríguez, O. (2015). Modelación Hidrodinámica de la Rotura de la Presa Ing. José María Ochoa Pile, Mediante el Uso de Modelos Computacionales. Tesis inédita de grado. Decanato de Ingeniería Civil. Universidad Centroccidental “Lisandro Alvarado”. Barquisimeto.
Suárez, L. (2002). Incidentes en las presas de Venezuela. Caracas: Arte.
Thorton, Ch. y otros. (2010). Predicting peak outflow from breached embankment dams. Colorado State University.
U.S. Army corps of engineers (USACE) (2010). Hydraulic Reference Manual. HEC-RAS River Analysis System.
U.S. Army corps of engineers (USACE) (2014). Using HEC-RAS for Dam Break Studies. CEIWR-HEC.
U.S. GEOLOGICAL SURVEY (USGS). (1984). Guide for Selecting Manning's Roughness Coefficients for Natural Channels and Flood Plains.
Von Thun, L. y Gillette, D. (1990). Guidance on Breach Parameters. Internal Memorandum, U.S. Department of Interior, Bureau of Reclamation (USBR), Denver, Colorado.
Wahl, T. (1998). Prediction of Embankment Dam Breach Parameters. A Literature Review and Needs Assessment. Dam Safety Research Report. U.S. Department of the Interior. Bureau of Reclamation (USBR).
Wahl, T. (2004). Uncertainty of Predictions of Embankment Dam Breach Parameters. Journal of Hydraulic Engineering ASCE.
Wahl, T. (2010). Dam breach modeling – an overview of analysis methods. Conferencia Federal Interagencial Conjunta sobre sedimentación y modelación hidrológica. (2010).
Wahl, T. (2014). Evaluation of Erodibility-based embankment dam breach equations. U.S. Bureau of Reclamation
Published
How to Cite
Issue
Section
Authors keep their copyrights so articles can be reused for teacher and research purpose. Readers and users can also reuse articles for the same purposes but not for commercial purposes. Ágora de Heterodoxias has no responsibility on information given by collaborators which is not necessarily the point of view of the publication