Comparative study of the corrosion resistance of A95083 in waters of Lake Maracaibo using different electrochemical techniques

Authors

  • Henry Rodríguez Moreno Universidad Centroccidental Lisandro Alvarado, Venezuela
  • Zoilabet Duque Casanova Fundación Instituto Zuliano de Investigaciones Tecnológicas (INZIT), Venezuela
  • Cateryna Aiello Mazzarri Universidad del Zulia, Venezuela

Keywords:

ANOVA GLM, Aluminum Alloys, Lake of Maracaibo, Interface Resistance

Abstract

Electrochemical techniques, contrary to the gravimetric technique, allow to determine in a fast and reliable way the corrosive behavior of different materials in specific media, for which historically they have been increasingly implemented. However, it is necessary to corroborate the correlation between the values obtained by different techniques in characteristic natural environments, as is the case of Lake Maracaibo due to the existing biodiversity. For this reason, a comparative study was carried out between electrochemical impedance spectroscopy, linear polarization resistance and cyclic polarization, measuring the behavior of the interface resistance of the aluminum alloy A95083, imported and widely used in marine applications. The experimental phase was carried out with a set of tests at the laboratory level, using a conventional electrochemical cell of three electrodes, coupled to a potentiostat. The data processing and its dynamic and systematic analysis and the use of the General Linear Model of ANOVA, allowed to corroborate that there are no significant differences in the values of the interface resistance obtained through the different electrochemical techniques used, which agrees with found in other investigations

Downloads

Download data is not yet available.

References

American Society for Testing and Materials. ASTM G 31-72 (2004a). Standard Practice for Laboratory Inmersion Corrosion Testing of Metals. 3,4pp.

American Society for Testing and Materials. ASTM B209M-04. (2004b) Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate.

American Society for Testing and Materials. ASTM G 5-94 (2004c). Standard Reference Test Method for Making Potentiostatic and Potentiodynamic Anodic Polarization Measurements. 2-4 pp.

American Society for Testing and Materials. ASTM G 61-86 (2003a). Standard Test Method for Conducting Cyclic Potentiodynamic Polarization Measurements for Localized Corrosion susceptibility of Iron-, Nikel-, or Cobalt-Based Alloys.

American Society for Testing and Materials. ASTM G 69-97 (2003b). Standard Test Method for Measurements of Corrosion Potentials of Aluminum Alloys. West Conshohocken, Estados Unidos.

American Society for Testing and Materials. ASTM G 59-97 (2003c). Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements. 1, 3 pp.1.

American Society for Testing and Materials. ASTM G106-89 (1999). Standard Practice for Verification of Algorithm and Equipment for Electrochemical Impedance Measurements. 1-3p.

Andrade, C. y Feliu, S. (1991). Corrosión y protección metálicas: Vol. II. Consejo Superior de Investigaciones Científicas. Madrid.

Bard, A., Frankel, G., y Statmann, M., (2003). Encyclopedia of Electrochemistry, Corrosion and oxide Films. Vol 4, Chapter 7, Electrochemical Techniques for Corrosion, 687-720.

Genescá, J. (2002). Técnicas electroquímicas de corriente directa para la determinación de la velocidad de corrosión. Disponible en: http://depa.fquim.unam.mx//labcorr/ libro/tafel2.pdf.

Genescá, J., Mendoza, J., Durán, R. y García, E. (2002). Conventional DC electrochemical techniques in corrosión testing. [En línea]. Disponible: http://depa.fquim. unam.mx//labcorr/libro/keynote151cc.pdf

González, J. (1989). Control de la corrosión: Estudio y medida por técnicas electroquímicas. Consejo Superior de investigaciones Científicas. Centro Nacional de Investigaciones Metalúrgicas. Madrid, 1989.

González, J., Morcillo, M., Escudero, E., López, V., Otero E. (2002). Atmospheric corrosion of bare and anodized aluminium in wide range of environmental conditions Part I: Visual observations and gravimetric results. Surface and Coatings Technology, 153, 225-234.

Juzeliunas E., Ramanauskas, R., Lugauskas, A., Leinartas, K., Samuleviciene, M., Sudavicius, A. y Juškenas (2007). Microbially influenced corrosion of zinc and aluminium Two-year subjection to influence of Aspergillus niger. Corrosion Science, Vol 49 (2007) p. 4098-4112.

Meas, Y. T. (2002). Técnicas electroquímicas de corriente directa para la determinación de la velocidad de corrosión. [En línea]. Centro de Investigaciones y Desarrollo en electroquímica (CIDETEQ). Querétaro, México. Disponible: http://depa.fquim. unam.mx//labcorr/libro/LPR.PDF.

Rodríguez, F. (2002). Técnicas electroquímicas de corriente directa para la medición de la velocidad de corrosión. [En línea]. Universidad Nacional Autónoma de México (UNAM). Disponible: http://depa.fquim.unam.mx//labcorr/libro /LPR.PDF.

Rosliza, R. y Wan, W. (2010). Improvement of corrosion resistance of AA6061 alloy by tapioca starch in seawater. Current Applied Physics, 10, 221-229.

Published

2018-06-19

How to Cite

Rodríguez Moreno, H., Duque Casanova, Z., & Aiello Mazzarri, C. (2018). Comparative study of the corrosion resistance of A95083 in waters of Lake Maracaibo using different electrochemical techniques . Agroindustria, Sociedad Y Ambiente, 1(10), 29 - 40. Retrieved from https://revistas.uclave.org/index.php/asa/article/view/1813