Optimization of the grounding system at the conocoto treatment plant, Quito - Ecuador

Authors

  • David Sarzosa Departamento de Eléctrica y Electrónica. Universidad de las Fuerzas Armadas ESPE, Ecuador.
  • Julián Chipugsi Departamento de Eléctrica y Electrónica. Universidad de las Fuerzas Armadas ESPE, Ecuador.
  • Hugo Caicedo Departamento de Eléctrica y Electrónica. Universidad de las Fuerzas Armadas ESPE, Ecuador.
  • Luis Murillo Departamento de Energía y Mecánica, Universidad de las Fuerzas Armadas ESPE, Ecuador.
  • Brigitte Peña Departamento de Eléctrica y Electrónica. Universidad de las Fuerzas Armadas ESPE, Ecuador.

Keywords:

accidents, biosecurity, labor regulations, occupational risks

Abstract

In any work environment, workers are exposed to physical risks, which can affect their performance, cause damage to their health, temporary disability, and even death. Among the most common accidents and risks are atmospheric electrical discharges, which are responsible for many of the deaths from work accidents due to the remaining energy that can be transmitted to equipment and buildings, so it was essential to optimize the Grounding System (SPAT) to minimize this type of work accident. In this regard, a diagnosis was made of the soil resistivity, grounding system, and lightning rod system at the Conocoto treatment plant in the canton of Quito, province of Pichincha, in order to comply with Ecuadorian biosafety regulations (IEEE 80 Std. 2000 and CTE DB-SUA 8.), which guarantee the correct sizing of the grounding meshes implemented to protect personnel from dangerous voltages and optimize the resistance value of the grounding meshes. The results found show that the use of the ground intensifier (GEMe) improved the resistivity of the soil surrounding the rods and the electrical conductor, helping to maintain its humidity regardless of the climatic seasons and reducing the risks of physical damage due to the transmission of voltages above the maximum values allowed for buildings and infrastructure resulting from electrical and atmospheric discharges. The optimization of the system implemented will reduce occupational accidents and improve the safety of workers in the water treatment system.

Downloads

Download data is not yet available.

References

Al Rashid, Q., Abuel-Naga, H., Leong, E., Lu, Y., & Al Abadi, H. (2018) Experimental-artificial intenlligence approach for characterizing electrical resistivity of partially saturated clay liners. Appl. Clay Sci., 156, 1–10.

Alba V., B., & Hernández Areu, O. (2018). Desempeño de modelos de pararrayos de óxido metálico frente a impulsos de corriente. Ingeniería Energética, 39(2): 65-75.

Brocal, F., González, C., Komljenovic, D., Katina,P., & Sebastián, M. (2019). Emerging Risk Management in Industry 4.0: An Approach to Improve Organizational and Human Performance in the Complex Systems. Complexity Article ID 2089763, 1:10.

Chen, Y., Lin, K., & Li, Y. (2017). Assessment to effectiveness of the new early Streamer emission lightning protection system. International journal on smart sensing and intelligent systems 10 (1), 108-123.

Couto, F., Ikaunin, M., Salgado, R., Pinto, P., Viegas, T., & Pinty, J. (2019). Lightning modelling for the research of forest fire ignition in Portugal. Atmospheric research 242 e1049993.

Dominguez, J., Martinez, G.,Garrido, J., y Jimenez, J. (2019). Diseño de reingeniería del sistema de puesta a tierra de un transformador de 300 KVA. Revista de Ingeniería Tecnológica 3 (9),1-7.

Dziula, P., & Pas, J. (2018). Low Frequency Electromagnetic Interferences Impact on Transport Security Systems Used in Wide Transport Areas. the International Journal on Marine Navigation and Safety of Sea Transportation 12 (2), 251-258.

Gallardo, C., Repetto, J., Yungan, L., & Quishpi, C. (2020). Pararrayo Multipuntas Tipo Franklin para Protección de Descargas Atmosféricas de Equipos Eléctricos y Electrónicos. RECITIUTM, 6(2), 137-154.

Garay, R., Tapia, R., Castillo, M., Fernandez, O. y Vergara, J. (2018). Habitabilidad de edificaciones y ranking de discriminación basado en seguridad y sustentabilidad Frente a eventuales desastres Estudio de caso: viviendas de madera. Revista de Estudios Latinoamericanos sobre Reducción del Riesgo de Desastres REDER, 2(2),28-45

Gasik, P., Mathis, A.,Fabbietti, L., & Margutti, J. (2017). Charge density as a driving factor of discharge formation in GEM-based detectors. Nuclear instruments and methods un physisc research, detectors and associated equipment 870, 116-122.

Haddad, N., Fakhoury, l.,& Akasheh, T. (2018). Notes on anthropogenic risks mitigation management and recovery of ancient theatres’ heritage: Qualitative assessment and recommendation. Journal of Cultural Heritage Management and Sustainable Development, 8 (3),222-256.

Høg, E., Fournié, G., Hoque, M. Mahmud, R., Pfeiffer, D.,& Barnett, T. (2019). Competing biosecurity and risk rationalities in the Chittagong poultry commodity chain, Bangladesh. BioSocieties 14, 368–392.

Kasza, Z.,& Kovacs, K. (2019). Risk Analysis About Lightning Protection for Buildings Focusing on Risk of Loss of Human Life. Procedia manucfacturing 32, 458-465.

Lautner, L., Fabbietti, L., Gasik, P., & Klemenz, T. (2019). High voltage scheme optimization for secondary discharge mitigation in GEM-based detectors JINST 14 P08024, 1-13.

Martínez, L., Arreygue, J., Chavez, C. y Equihua, L. (2019). Medición de resistividad eléctrica de un suelo característico de Morelia, Michocacán, considerando el efecto de la compactación . Ciencia Nicolaita 77. 73-86.

Melchers, R. & Wells, T. (2018). Correlation between soil electrical resistivity, polarisation resistance and corrosion of steel. Journal Corrosion Engineering, Science and Technology 53 (7),524-530.

Mercado V. y Peña J. (2016). Modelo de gestión de mantenimiento enfocado en la eficiencia y optimización de la energía eléctrica. SABER. Revista Multidisciplinaria del Consejo de Investigación de la Universidad de Oriente, 28(1),99-105

Molina Bautista, C. A., & Quishpe Gaibor, J. S. (2018). Deontología aplicada el mantenimiento de centrales de generación hidroeléctricas. Caribeña de Ciencias Sociales, (septiembre). https://www.eumed.net/rev/caribe/2018/09/deontologia- ntenimiento-hidroelectricas.html

Najafi,A., Zare, K., & Nojovan, S. (2019). Risk-based scheduling of smart apartment building under market price uncertainty using robust optimization approach. Sustanaible cities ans society 48, e101549

Pandey, L., & Shukla S. (2018) Effect of state of compaction on the electrical resistivity of sand-bentonite lining materials. Journal of Applied Geophysics, 155 208-216.

Pantoja, J., Vera, S. Y Aviles, T. (2017). Riesgos laborales en las empresas. Polo del conocimiento 2 (5), 833-868.

Perez, A. y Suarez, L. (2017). El enfoque a riesgos para fortalecer la gestión ambiental del sistema de Tratamiento de agua. Revista de Ciencias Farmacéuticas y Alimentarias 3 (2), 1-10.

Ramirez, I., Ramirez, M., & Salgado, E. (2019). Neural Network Model to Estimate Resistivity of Ground Enhancers Reinforced with Graphene Nano Particles for Transmission Lines. Journal of nano research 58, 139-150.

Ramirez, I., Salgado, J., Gaona, E. y Sandoval, P. (2016). Grafeno y su uso en intesnificadores quimicos para sistema de puesta a tierra en lineas de trasnmisión. Boletin IIE, 77-84.

Reyes, C. M., & Cruz, E. M. (2017). Análisis de técnicas para medición de la resistividad de terreno mediante modelado.

Ricaldi-Yarvi, E. L., Torrez-Santalla, R., Quispe, C., & Quispe-Mamani, J. (2018). Descargas eléctricas atmosféricas (DEA's-Rayos) características principales en el cielo Boliviano. Revista Boliviana de Física, 32(32), 12-19.

Salam, M.,Rahman, Q., Peng, S., & Wen, F. (2017). Soil resistivity and ground resistance for dry and wet soil. J. Mod. Power Syst. Clean Energy (2017) 5(2),290–297

Sobolweski, K. (2018). Numeric and measurement analysis of earthing resistance in layered soil including GEM material. Progress in Applied Electrical Engineering (PAEE), 1-5.

Sosa Moreno, L. Ú., León Martel, J. J., Lugo Jáuriga, B., & Borges López, J. A. (2016). Muerte por fulguración. Medicentro Electrónica, 20(1), 11-17.

Sun, Q., Lyu, C. & Zhang, W. (2020). The relationship between thermal conductivity and electrical resistivity of silty clay soil in the temperature range − 20 C to 10 C. Heat Mass Transfer 56, 2007–2013

Valencia, J. D. C., y Garcia, E. G. (2011). Manual para la interpretación del perfil de resistividad obtenido al realizar el estudio de la resistividad del suelo a partir de las configuraciones del método de Wenner (Doctoral dissertation, Universidad Tecnológica de Pereira. Facultad de Tecnologías. Tecnología Eléctrica).

Verdugo, K., Aires, L., & Merchán, H. (2018). Contribución para la Implementación de una Red de Detección de Rayos en Ecuador. Revista Politécnica, 41(1), 17-24.

Yi, L., Hossam, A., Qais, R., & Md, F. (2019) Effect of pore-water salinity on the electrical resistivity of partially saturated compacted clay liners. Advances in Materials Science and Engineering 2019: 1-13.

Zhang, L., (2019). Induction Electric Hazard Prevention and Control Technology in Contact Network Maintenance Construction. The Frontiers of Society, Science and Technology 10 (1), 146-150.

Published

2020-07-15

How to Cite

Sarzosa, D., Chipugsi, J., Caicedo, H., Murillo, L., & Peña, B. (2020). Optimization of the grounding system at the conocoto treatment plant, Quito - Ecuador. Agroindustria, Sociedad Y Ambiente, 2(15), 69-84. Retrieved from https://revistas.uclave.org/index.php/asa/article/view/2854