Non-food agro-industrial technology: potential of Catharanthus roseus based on the biosynthesis of the secondary metabolites vinblastin and vincristin
DOI:
https://doi.org/10.5281/zenodo.7365378Keywords:
Amazonia, biosynthesis, cancer, cancer, pharmacology, nanoparticles.Abstract
Catharanthus roseus is an apocynacea widely distributed in the Ecuadorian Amazon, which possesses the secondary metabolites vinblastine and vincristine, which gives it a high potential in the treatment of different diseases, including cancer, but with the disadvantage that the concentration of these metabolites in the plant is very low, so its use for pharmacological purposes is required. In order to determine the importance of the mechanisms to achieve the biosynthesis of the secondary metabolites vinblastine and vincristine for its subsequent use for the control of diseases in humans, particularly those oncological diseases where the cost of drugs, prevents access to treatment to most of the population, a systematic review was conducted in the databases SCOPUS, GOOGLE ACADEMIC REDALYC, SCIELO and LATINDEX. The research carried out shows that the Catharanthus roseus species can be used for the control of various diseases, including several types of cancer; however, given that its concentration is very low in plants, its biosynthesis is required, which according to the results found is achieved through in vitro propagation.
Downloads
References
Alam, P., Khan, Z. A., Abdin, M. Z., Khan, J. A., Ahmad, P., Elkholy, S. F., & Sharaf-Eldin, M. A. (2017). Efficient regeneration and improved sonication-assisted Agrobacterium transformation (SAAT) method for Catharanthus roseus. 3 Biotech, 7(1), 26. DOI 10.1007/s13205-016-0593-5
Almagro, L., Fernández-Pérez, F., & Pedreño, M. A. (2015). Indole alkaloids from Catharanthus roseus: bioproduction and their effect on human health. Molecules, 20(2), 2973-3000. https://doi.org/10.3390/molecules20022973
Al-Shaqha, W. M., Khan, M., Salam, N., Azzi, A., & Chaudhary, A. A. (2015). Anti-diabetic potential of Catharanthus roseus Linn. and its effect on the glucose transport gene (GLUT-2 and GLUT-4) in streptozotocin induced diabetic wistar rats. BMC complementary and alternative medicine, 15(1), 1-8. https://doi.org/10.1186/s12906-015-0899-6
Artavia, M. M., Cordero, J. P., Torres, L. F. A., & Díaz, I. G. (2020). Metabolitos secundarios con actividad medicinal extraídos de hongos provenientes de Centroamérica. Tecnología en Marcha, 33(3), 80-89. https://doi.org/10.18845/tm.v33i3.4416
Aslam, J., Khan, S. H., Siddiqui, Z. H., Fatima, Z., Maqsood, M., Bhat, M. A., ... & Sharma, M. P. (2010). Catharanthus roseus (L.) G. Don. An important drug: it’s applications and production. Pharmacie Globale (IJCP), 4(12), 1-16. www.pharmacie-globale.info
Birat, K., Siddiqi, T. O., Mir, S. R., Aslan, J., Bansal, R., Khan, W., ... & Panda, B. P. (2021). Enhancement of vincristine under in vitro culture of Catharanthus roseus supplemented with Alternaria sesami endophytic fungal extract as a biotic elicitor. International Microbiology, 1-10. https://doi.org/10.21203/rs.3.rs-308452/v1
Bruckmann, M. (2012). La centralidad del agua en la disputa global por recursos estratégicos. América Latina en Movimiento, 473, 9-13. http://www.vientosur.info/documentos/Agua%20Alai.pdf
Cardoso, J. C., Oliveira, M. E., & Cardoso, F. D. C. (2019). Advances and challenges on the in vitro production of secondary metabolites from medicinal plants. Horticultura Brasileira, 37, 124-132. https://doi.org/10.1590/S0102-053620190201
Cartay, R., & Chaparro-Martínez, E. X. I. O. (2020). Usos Turísticos de la Biodiversidad en la Región Amazónica Ecuatoriana. Rosa dos Ventos, 12(3), 484-504. https://doi.org/10.18226/21789061.v12i3p484
Choi, Y. H., Tapias, E. C., Kim, H. K., Lefeber, A. W., Erkelens, C., Verhoeven, J. T. J., ... & Verpoorte, R. (2004). Metabolic discrimination of Catharanthus roseus leaves infected by phytoplasma using 1H-NMR spectroscopy and multivariate data analysis. Plant physiology, 135(4), 2398-2410. https://dx.doi.org/10.1104%2Fpp.104.041012
Creţu, E., Trifan, A., Vasincu, A., & Miron, A. (2012). Plant-derived anticancer agents-curcumin in cancer prevention and treatment. Rev Med Chir Soc Med Nat lasi, 116(4), 1223-9. https://www.revmedchir.ro/index.php/revmedchir/article/view/1019
Gajalakshmi, S., Vijayalakshmi, S., & Devi, R. V. (2013). Pharmacological activities of Catharanthus roseus: a perspective review. International Journal of Pharma and Bio Sciences, 4(2), 431-439. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.302.1823&rep=rep1&type=pdf
Naik, P. M., & Al-Khayri, J. M. (2016). Abiotic and biotic elicitors–role in secondary metabolites production through in vitro culture of medicinal plants. Abiotic and Biotic Stress in Plants, Recent Advances Future Perspectives. IntechOpen, 247-277. DOI: 10.5772/61442
Ghasempour, M., Iranbakhsh, A., Ebadi, M., & Ardebili, Z. O. (2019). Multi-walled carbon nanotubes improved growth, anatomy, physiology, secondary metabolism, and callus performance in Catharanthus roseus: an in vitro study. 3 Biotech, 9(11), 1-10. https://dx.doi.org/10.1007%2Fs13205-019-1934-y
Garzón, L. P. (2019). Usos medicinales asociados a la uña de gato (Uncaria tomentosa (Willd. exRoemer & Schultes) DC y Uncaria guianensis (Aublet) JF Gmel) en comunidades tikuna del sur de la amazonia colombiana. Ethnoscientia: Revista Brasileira de Etnobiologia e Etnoecologia, 4, 1-15. http://dx.doi.org/10.22276/ethnoscientia.v4i1.236
Goswami, S., & Kuril, P. (2019). Anticancer, Antimicrobial and Phytochemical Properties of Catharanthus roseus (L.). https://doi.org/10.21276/ijpbs.2019.9.1.93
Hanafy, M. S., Matter, M. A., Asker, M. S., & Rady, M. R. (2016). Production of indole alkaloids in hairy root cultures of Catharanthus roseus L. and their antimicrobial activity. South African Journal of Botany, 105, 9-18. https://doi.org/10.1016/j.sajb.2016.01.004
Hussain, M. S., Fareed, S., Saba Ansari, M., Rahman, A., Ahmad, I. Z., & Saeed, M. (2012). Current approaches toward production of secondary plant metabolites. Journal of pharmacy & bioallied sciences, 4(1), 10. https://dx.doi.org/10.4103%2F0975-7406.92725
Ke, Y., Al Aboody, M. S., Alturaiki, W., Alsagaby, S. A., Alfaiz, F. A., Veeraraghavan, V. P., & Mickymaray, S. (2019). Photosynthesized gold nanoparticles from Catharanthus roseus induces caspase-mediated apoptosis in cervical cancer cells (HeLa). Artificial cells, nanomedicine, and biotechnology, 47(1), 1938-1946. https://doi.org/10.1080/21691401.2019.1614017
Kumar, S., Singh, B., & Singh, R. (2022). Catharanthus roseus (L.) G. Don: A review of its ethnobotany, phytochemistry, ethnopharmacology and toxicities. Journal of Ethnopharmacology, 284, 114647. https://doi.org/10.1016/j.jep.2021.114647
Levêque, D., & Jehl, F. (2007). Molecular pharmacokinetics of catharanthus (vinca) alkaloids. The Journal of Clinical Pharmacology, 47(5), 579-588. https://doi.org/10.1177/0091270007299430
Mekky, H., Al-Sabahi, J., & Abdel-Kreem, M. F. M. (2018). Potentiating biosynthesis of the anticancer alkaloids vincristine and vinblastine in callus cultures of Catharanthus roseus. South African Journal of Botany, 114, 29-31. https://doi.org/10.1016/j.sajb.2017.10.008
Miñano, E. V., Baker, T. R., Banda, K., Coronado, E. H., Monteagudo, A., Phillips, O. L., ... & Martinez, R. V. (2018). El sumidero de carbono en los bosques primarios amazónicos es una oportunidad para lograr la sostenibilidad de su conservación. Folia Amazónica, 27(1), 101-109. https://doi.org/10.24841/fa.v27i1.456
Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., ... & Stewart, L. A. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic reviews, 4(1), 1-9. https://doi.org/10.1186/2046-4053-4-1
Nartop, P. (2018). Engineering of biomass accumulation and secondary metabolite production in plant cell and tissue cultures. In Plant metabolites and regulation under environmental stress (pp. 169-194). Academic press. https://doi.org/10.1016/B978-0-12-812689-9.00009-1
Ochoa-Villarreal, M., Howat, S., Hong, S., Jang, M. O., Jin, Y. W., Lee, E. K., & Loake, G. J. (2016). Plant cell culture strategies for the production of natural products. BMB reports, 49(3), 149. https://dx.doi.org/10.5483%2FBMBRep.2016.49.3.264
Pan, Q., Saiman, M. Z., Mustafa, N. R., Verpoorte, R., & Tang, K. (2016). A simple and rapid HPLC-DAD method for simultaneously monitoring the accumulation of alkaloids and precursors in different parts and different developmental stages of Catharanthus roseus plants. Journal of Chromatography B, 1014, 10-16. https://doi.org/10.1016/j.jchromb.2016.01.034
Patharajan, S., Abirami, S. B., Elangomathavan, R., & Ramesh, S. (2017). Catharanthus roseus: Detoxification and Hepatic Protection of Aflatoxin B1. In: Naeem M., Aftab T., Khan M. (eds) Catharanthus roseus. Springer, Cham. https://doi.org/10.1007/978-3-319-51620-2_14
Portal, R., Lameira, O., De Assis, R. M. A., & Medeiros, A. (2014). Caracterização fenológica da espécie Catharanthus roseus [L.] G. In Embrapa Amazônia Oriental-Artigo em anais de congresso (ALICE). In: Seminário de iniciação científica, 18.; seminário de pós-graduação da Embrapa Amazônia Oriental, 2., 2014, Belém, PA. Anais. Belém, PA: Embrapa Amazônia Oriental, 2014. https://www.alice.cnptia.embrapa.br/bitstream/doc/994572/1/Pibic43.pdf
Rajagopal, T., Jemimah, I. A. A., Ponmanickam, P., & Ayyanar, M. (2015). Synthesis of silver nanoparticles using Catharanthus roseus root extract and its larvicidal effects. Journal of environmental biology, 36(6), 1283. https://pubmed.ncbi.nlm.nih.gov/26688962/
Restrepo-Betancur, L. F. (2021). Migración en Sudamérica en los últimos treinta años. El Ágora USB, 21(1), 61-74. https://doi.org/10.21500/16578031.5079
Sarrou, E., Chatzopoulou, P., Dimassi-Theriou, K., Therios, I., & Koularmani, A. (2015). Effect of melatonin, salicylic acid and gibberellic acid on leaf essential oil and other secondary metabolites of bitter orange young seedlings. Journal of Essential Oil Research, 27(6), 487-496. http://dx.doi.org/10.1080/10412905.2015.1064485
Sharma, A., Verma, P., Mathur, A., & Mathur, A. K. (2018). Genetic engineering approach using early Vinca alkaloid biosynthesis genes led to increased tryptamine and terpenoid indole alkaloids biosynthesis in differentiating cultures of Catharanthus roseus. Protoplasma, 255(1), 425-435. https://doi.org/10.1007/s00709-017-1151-7
Tafur, V., Tello, E. G., Rodríguez, D. T., Orellana, Y. G., & Borges, J. B. (2020). Uso medicinal del Solanun nigrum y su relación con la presencia de metabolitos secundarios. Agroindustria, Sociedad y Ambiente, 1(14), 158-176. https://revistas.uclave.org/index.php/asa/article/view/2837
Tiong, S. H., Looi, C. Y., Hazni, H., Arya, A., Paydar, M., Wong, W. F., ... & Awang, K. (2013). Antidiabetic and antioxidant properties of alkaloids from Catharanthus roseus (L.) G. Don. Molecules, 18(8), 9770-9784. http://www.mdpi.com/journal/molecules
Zaman, M. A. K., Azzeme, A. M., Ramle, I. K., Normanshah, N., Shaharuddin, N. A., Ahmad, S., & Abdullah, S. N. A. (2021). Prolonged incubation of callus on auxin herbicide 2, 4-D displayed significant effect on alkaloid production in callus of the woody medicinal plant Polyalthia bullata. In Vitro Cellular & Developmental Biology-Plant, 1-11. https://doi.org/10.1007/s11627-021-10194-0
Zhou, M. L., Shao, J. R., & Tang, Y. X. (2009). Production and metabolic engineering of terpenoid indole alkaloids in cell cultures of the medicinal plant Catharanthus roseus (L.) G. Don (Madagascar periwinkle). Biotechnology and applied biochemistry, 52(4), 313-323. https://doi.org/10.1042/BA20080239
Published
How to Cite
Issue
Section
Copyright (c) 2022 Valdano Tafur, Marta Suárez
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.