Changes in soil P-fractions by the addition of phosphoric rock at different incubation times and moisture contents

Authors

  • Danilo López-Hernández Instituto de Zoología y Ecología Tropical, Facultad de Ciencias, Universidad Central de Venezuela. Apdo. 47058. Caracas. Venezuela.
  • Gerardo Romero Instituto de Zoología y Ecología Tropical, Facultad de Ciencias, Universidad Central de Venezuela. Apdo. 47058. Caracas. Venezuela.

Keywords:

Acid soils, microbial biomass, P-adsorption, P-fractionation

Abstract

The objective of this study was to compare the dissolution of the phosphate rock (PR) Monte Fresco in two acidic soils very contrasting in physicochemical characteristics, through a scheme of fractionation at different periods of incubation and moisture contents. Iguana, a very sandy soil with a low natural fertility and low phosphate retention; and much more acid Bramón soil with a higher exchangeable Al content but with greater natural fertility and high capacity of phosphate retention. Iguana soil dissolved the PR in a greater proportion than the soil Bramón, since this soil, despite its strong acidity presented high levels of P (total and available) and exchangeable Ca which generated less appropriate conditions for the reaction of the PR. During incubation with PR, as a result of the redistribution of the major fractions of P (P-HCl and P-residual) originally present in the PR, occurred a significant increase for the P-resin and microbial-P fractions in Iguana soil; and in P-resin, microbial-P, NaOH-Pi and Po for Bramón soil, in this case, possibly associated with its higher C content. Higher moisture contents decreased more labile P-fractions (resin and NaHCO3) values in both soils, which implies, a higher adsorption of P due to a greater contact between the adsorbent surfaces and newly released P from the PR.

Downloads

Download data is not yet available.

References

1. Brossard, M., Balbino, E. Hien, N. Ndour, J. Leprun y D. López-Hernández. 2015. Usos de suelos en sabanas. Esbozo transatlántico: Sur América y África Centro Occidental. In: R. Falcón et al. (eds.). Tierras Llaneras de Venezuela. Universidad de Las Andes, Mérida, Venezuela. pp. 529-554.
2. Casanova E. y G. Elizalde. 1988. Caracterización mineralógica de algunas rocas fosfóricas venezolanas Agronomía Tropical 38: 97-107.
3. Casanova, E. 2007. Efecto de rocas fosfóricas naturales y modificadas sobre la cantidad y calidad de pastos introducidos en Venezuela Agronomía Tropical 57: 271-280.
4. Fayiga, A. y G. Obigbesan. 2018. Effect of two moisture regimes on P-release from P treated soils. Archives of Agronomy and Soil Science 64: 419-429.
5. Gilabert de B., J., I. López de R. y R. Pérez de R. 1990. Manual de métodos y procedimientos de referencia. Análisis de suelos para diagnóstico de fertilidad. FONAIAP-CENIAP. Maracay. Serie D. Nº 26. 164 p.
6. He, Z., H. Yao, D. Calvert, P. Stoffella, X. Yang, G. Chen y G. Lloyd. 2005. Dissolution characteristics of central Florida phosphate rock in an acidic sandy soil. Plant and Soil. 273: 157-166.
7. Hedley, M., W. Stewart y B. Chauhan. 1982. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Soc. Am. J. 46: 970-976.
8. Hernández-Valencia, I. y M. Bautis. 2005. Cambios en el contenido de fósforo en el suelo superficial por la conversión de sabanas en pinares. Bioagro 17: 69-78.
9. Kanabo, I. y R. Gilkes. 1988. The effects of moisture regime and incubation period on the dissolution of North Caroline phosphate rock in soil. Aust. J. Soil Res. 26: 153-163.
10. Kellogg, L., S. Bridgham y D. López-Hernández. 2006. Organic phosphorus mineralization. A comparison of isotopic and non-isotopic methods. Soil Science American Journal 70: 1349-1358.
11. López-Contreras, A.Y., I. Hernández-Valencia y D. López-Hernández. 2007. Fractionation of soil phosphorus in organic amended farms located on sandy soils of Venezuelan Amazonian. Biology & Fertility of Soils 43: 771-777.
12. López-Gutiérrez, J., M. Toro y D. López-Hernández. 2004. Arbuscular mycorrhyza and enzymatic activities in the rhizosphere of Trachypogon plumosus in three acid savanna soils. Soil, Agriculture & Environment 103: 405-411.
13. López-Hernández, D. 2016. Soils with hardened laterites are they really high P-sorbing? Ciencia 24: 178-186.
14. López-Hernández, D. y C. Burnham. 1974. The covariance of phosphate sorption with other soil properties in some British and Tropical soils. J. Soil Sci. 25: 196-206.
15. López-Hernández, D. y M. Niño. 1993. Phosphorus mineralization during laboratory incubation in soils derived from different textured parent materials. Geoderma 56: 527-537. 1993.
16. López-Hernández. D. 1977. La Química del Fósforo en Suelos Ácidos. Universidad Central de Venezuela. Caracas. 123 p.
17. Mac Kay, A., J. Syers, R. Tillman y P. Gregg. 1986. A simple model to describe the dissolution of phosphate rock materials in soil. Soil Sci. Amer. J. 50: 291-296.
18. Morillo, A., O. Sequera y R. Ramírez. 2007. Roca fosfórica acidulada como fuente de fósforo en un suelo ácido con o sin encalado. Bioagro 19: 161-168.
19. Nyambati, R.O. y P.A. Opala. 2014. The effect of Minjingu phosphate rock and triple superphosphate on soil phosphorus fractions and maize yield in Western Kenya. ISRN Soil Science.http://dx.doi.org/10.1155/2014/920541 (consulta del 29/04/2018)
20. Pinto F.A, E.D. De Souza, H.B. Paulino, N. Curi y C.M. Carbone. 2013. P-sorption and desorption in savanna Brazilian soils as a support for phosphorus fertilizer management. Ciênc Agrotec Lavras 37: 521-530.
21. Rangel-Vasconcelos, L., D. Zarin, F. Oliveira, S. Vasconcelos, C. Carvalho y M. Santos. 2015. Effect of water availability on soil microbial biomass in secondary forest in eastern Amazonia. R. Bras. Ci. Solo 39: 377-384.
22. Ravindran. A. y S. Yang. 2015. Effects of vegetation type on microbial m biomass carbon and nitrogen in subalpine mountain forest soils. Journal of Microbiology, Immunology and Infection 48: 362-369.
23. Rivaie A., P. Loganathan, J. Graham, R. Tillman y T. Payn. 2008. Effect of phosphate rock and triple superphosphate on soil phosphorus fractions and their plant-availability and downward movement in two volcanic ash soils under Pinus radiata plantations in New Zealand. Nutrient Cycling in Agroecosystems 82: 75-88.
24. Romero, G. y D. López-Hernández. 2018. Evaluación de métodos para la disolución de la roca fosfórica Monte Fresco. Bioagro 30: 151-156.
25. Sequera, O. y R. Ramírez. 2013. Roca fosfórica acidulada con ácido sulfúrico y tiosulfato de amonio como fuente de fósforo para frijol en dos tipos de suelo. Bioagro 25: 39-46.
26. Zapata, F. y R. Roy. 2007. Utilización de las rocas fosfóricas para una agricultura sostenible. Boletín FAO Fertilizantes y Nutrición Vegetal No 13. Roma. 155 p.

Published

2020-03-28

How to Cite

López-Hernández, D., & Romero, G. (2020). Changes in soil P-fractions by the addition of phosphoric rock at different incubation times and moisture contents. Bioagro, 31(1), 13-22. Retrieved from https://revistas.uclave.org/index.php/bioagro/article/view/2608