Changes in soil P-fractions by the addition of phosphoric rock at different incubation times and moisture contents
Keywords:
Acid soils, microbial biomass, P-adsorption, P-fractionationAbstract
The objective of this study was to compare the dissolution of the phosphate rock (PR) Monte Fresco in two acidic soils very contrasting in physicochemical characteristics, through a scheme of fractionation at different periods of incubation and moisture contents. Iguana, a very sandy soil with a low natural fertility and low phosphate retention; and much more acid Bramón soil with a higher exchangeable Al content but with greater natural fertility and high capacity of phosphate retention. Iguana soil dissolved the PR in a greater proportion than the soil Bramón, since this soil, despite its strong acidity presented high levels of P (total and available) and exchangeable Ca which generated less appropriate conditions for the reaction of the PR. During incubation with PR, as a result of the redistribution of the major fractions of P (P-HCl and P-residual) originally present in the PR, occurred a significant increase for the P-resin and microbial-P fractions in Iguana soil; and in P-resin, microbial-P, NaOH-Pi and Po for Bramón soil, in this case, possibly associated with its higher C content. Higher moisture contents decreased more labile P-fractions (resin and NaHCO3) values in both soils, which implies, a higher adsorption of P due to a greater contact between the adsorbent surfaces and newly released P from the PR.
Downloads
References
2. Casanova E. y G. Elizalde. 1988. Caracterización mineralógica de algunas rocas fosfóricas venezolanas Agronomía Tropical 38: 97-107.
3. Casanova, E. 2007. Efecto de rocas fosfóricas naturales y modificadas sobre la cantidad y calidad de pastos introducidos en Venezuela Agronomía Tropical 57: 271-280.
4. Fayiga, A. y G. Obigbesan. 2018. Effect of two moisture regimes on P-release from P treated soils. Archives of Agronomy and Soil Science 64: 419-429.
5. Gilabert de B., J., I. López de R. y R. Pérez de R. 1990. Manual de métodos y procedimientos de referencia. Análisis de suelos para diagnóstico de fertilidad. FONAIAP-CENIAP. Maracay. Serie D. Nº 26. 164 p.
6. He, Z., H. Yao, D. Calvert, P. Stoffella, X. Yang, G. Chen y G. Lloyd. 2005. Dissolution characteristics of central Florida phosphate rock in an acidic sandy soil. Plant and Soil. 273: 157-166.
7. Hedley, M., W. Stewart y B. Chauhan. 1982. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Soc. Am. J. 46: 970-976.
8. Hernández-Valencia, I. y M. Bautis. 2005. Cambios en el contenido de fósforo en el suelo superficial por la conversión de sabanas en pinares. Bioagro 17: 69-78.
9. Kanabo, I. y R. Gilkes. 1988. The effects of moisture regime and incubation period on the dissolution of North Caroline phosphate rock in soil. Aust. J. Soil Res. 26: 153-163.
10. Kellogg, L., S. Bridgham y D. López-Hernández. 2006. Organic phosphorus mineralization. A comparison of isotopic and non-isotopic methods. Soil Science American Journal 70: 1349-1358.
11. López-Contreras, A.Y., I. Hernández-Valencia y D. López-Hernández. 2007. Fractionation of soil phosphorus in organic amended farms located on sandy soils of Venezuelan Amazonian. Biology & Fertility of Soils 43: 771-777.
12. López-Gutiérrez, J., M. Toro y D. López-Hernández. 2004. Arbuscular mycorrhyza and enzymatic activities in the rhizosphere of Trachypogon plumosus in three acid savanna soils. Soil, Agriculture & Environment 103: 405-411.
13. López-Hernández, D. 2016. Soils with hardened laterites are they really high P-sorbing? Ciencia 24: 178-186.
14. López-Hernández, D. y C. Burnham. 1974. The covariance of phosphate sorption with other soil properties in some British and Tropical soils. J. Soil Sci. 25: 196-206.
15. López-Hernández, D. y M. Niño. 1993. Phosphorus mineralization during laboratory incubation in soils derived from different textured parent materials. Geoderma 56: 527-537. 1993.
16. López-Hernández. D. 1977. La Química del Fósforo en Suelos Ácidos. Universidad Central de Venezuela. Caracas. 123 p.
17. Mac Kay, A., J. Syers, R. Tillman y P. Gregg. 1986. A simple model to describe the dissolution of phosphate rock materials in soil. Soil Sci. Amer. J. 50: 291-296.
18. Morillo, A., O. Sequera y R. Ramírez. 2007. Roca fosfórica acidulada como fuente de fósforo en un suelo ácido con o sin encalado. Bioagro 19: 161-168.
19. Nyambati, R.O. y P.A. Opala. 2014. The effect of Minjingu phosphate rock and triple superphosphate on soil phosphorus fractions and maize yield in Western Kenya. ISRN Soil Science.http://dx.doi.org/10.1155/2014/920541 (consulta del 29/04/2018)
20. Pinto F.A, E.D. De Souza, H.B. Paulino, N. Curi y C.M. Carbone. 2013. P-sorption and desorption in savanna Brazilian soils as a support for phosphorus fertilizer management. Ciênc Agrotec Lavras 37: 521-530.
21. Rangel-Vasconcelos, L., D. Zarin, F. Oliveira, S. Vasconcelos, C. Carvalho y M. Santos. 2015. Effect of water availability on soil microbial biomass in secondary forest in eastern Amazonia. R. Bras. Ci. Solo 39: 377-384.
22. Ravindran. A. y S. Yang. 2015. Effects of vegetation type on microbial m biomass carbon and nitrogen in subalpine mountain forest soils. Journal of Microbiology, Immunology and Infection 48: 362-369.
23. Rivaie A., P. Loganathan, J. Graham, R. Tillman y T. Payn. 2008. Effect of phosphate rock and triple superphosphate on soil phosphorus fractions and their plant-availability and downward movement in two volcanic ash soils under Pinus radiata plantations in New Zealand. Nutrient Cycling in Agroecosystems 82: 75-88.
24. Romero, G. y D. López-Hernández. 2018. Evaluación de métodos para la disolución de la roca fosfórica Monte Fresco. Bioagro 30: 151-156.
25. Sequera, O. y R. Ramírez. 2013. Roca fosfórica acidulada con ácido sulfúrico y tiosulfato de amonio como fuente de fósforo para frijol en dos tipos de suelo. Bioagro 25: 39-46.
26. Zapata, F. y R. Roy. 2007. Utilización de las rocas fosfóricas para una agricultura sostenible. Boletín FAO Fertilizantes y Nutrición Vegetal No 13. Roma. 155 p.
Published
How to Cite
Issue
Section
Rights of the author/s are from the year of publication
This work is under the license:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
The opinions expressed by the authors not necesarily reflect the position of the publisher or UCLA. The total or partial reproduction of the texts published in this journal is authorized, as long as the complete source and the electronic address of this journal is cited. Authors have the right to use their articles for any purpose as long as it is done for non-profit purposes. Authors can publish the final version of their work on internet or any other medium, after it has been published in this journal.
Bioagro reserves the right to make textual modifications and technical adjustments to the figures of the manuscripts, in accordance with the style and specifications of the journal.