Interaction genotype environment in rice to identify mega and ideal environments by the model of site regression and biplot

Authors

  • Marco Acevedo Barona Instituto Nacional de Investigaciones Agrícola (INIA). CIAE Guárico. Calabozo. Apdo. 14
  • Rosa Álvarez Instituto Nacional de Investigaciones Agrícola (INIA). CIAE Portuguesa. Araure. Apdo. 102
  • Rubén Silva Instituto Nacional de Investigaciones Agrícola (INIA). CIAE Guárico. Calabozo. Apdo. 14
  • Orlando Torres Instituto Nacional de Investigaciones Agrícola (INIA). CIAE Barinas. Apdo. 170. Barinas. Venezuela
  • Edicta Reyes Instituto Nacional de Investigaciones Agrícola (INIA). CIAE Portuguesa. Araure. Apdo. 102

Keywords:

GCE, Oryza sativa, phenotypic stability, SREG, test locations

Abstract

The selection of cultivars based on genetic and environmental effects is insufficient for the plant breeder when they do not consider the interaction genotype by environment (GxE). The GxE studies allow appropriate identification of high performance materials for several or specific environments. The objectives of this study were to detect the GxE to identify mega-environments and their relationship with the genotypes, using the GGE biplot obtained from the analysis of the regression-by-site model (SREG) for yield in irrigated rice cultivars in Venezuela. In 12 environments, distributed in the main producing areas, we evaluated during 2010-2011 six genotypes of the most sown cultivars in that time and the present for the commercial production of rice in the country. A randomized complete blocks design with three repetitions was used with experimental units of 20 m2. The analysis of variance of the SREG model detected significance in the first two main components that explained almost 73 % of the GxE variation. The GGE biplot identified two mega-environments with 'Soberana FL' and 'SD 20A' as the best cultivars. The GGE biplot "means and stability" showed the line 'AP06B041' as the most stable genotype and the cultivar Soberana FL as the "ideotype genotype" with high average productivity and stable phenotypically. The best localities of tests for trials of genetic improvement of rice in Venezuela resulted in the Guárico State Experimental Field of INIA in both periods (dry and rainy), and in the Portuguesa State Experimental Field of Sehiveca for the rainy period

Downloads

Download data is not yet available.

References

1. Acevedo, M., E. Reyes, W. Castrillo, O. Torres, C. Marín, R. Álvarez, O. Moreno y E. Torres. 2010. Estabilidad fenotípica de arroz de riego en Venezuela utilizando los modelos Lin-Binns y AMMI. Agro. Trop. 60: 131-138.
2. Acevedo, M. R., Álvarez, O. Torres M., Salazar, I. Pérez Almeida, E., y O. Moreno. 2013. “Soberana FL”: Cultivar de arroz de riego para Venezuela. Agro. Trop. 63(1-2): 27-35.
3. Bernardo, R. 2010. Breeding for Quantitative Traits in Plants. Stemma Press. Woodbury, MN, USA.
4. Burgueño J., J. Crossa y M. Vargas. 2001. SAS Programs for graphing GE and GGE biplot. The AMMI analysis and graphing the biplot. Biometrics and Statistics Unit CIMMYT, México. pp. 29-36.
5. Branquinho, R., A. Heinemann, A. Pereira de Castro, J. Colombari Filho, J. Duarte, P. Santos et al. 2013. AMMI & GGE Biplot. Uma análise comparativa da avaliação de locais de teste de genótipos de arroz. 8° Congresso Brasileiro de Arroz Irrigado. UFSM. Santa Maria, Brasil. pp. 65-68.
6. Camargo-Buitrago I., E., Mc Intire y R. Gordón-Mendoza. 2011a. Identificación de mega-ambientes para potenciar el uso de genotipos superiores de arroz en Panamá. Pesquisa Agropecuaria Brasileira 46(9): 1601-1069.
7. Camargo-Buitrago I., E. Mc Intire y R. Gordón-Mendoza. 2011b. Identificación de ambientes representativos y discriminatorios para seleccionar genotipos de arroz mediante biplot GGE. Agronomía Mesoamericana 22(2): 245-255.
8. Colombari Filho, J., M. de Resende, O. de Morais, A. de Castro, E. Guimarães, J. Pereira et al. 2013. Upland rice breeding in Brazil: a simultaneous genotypic evaluation of stability, adaptability and grain yield. Euphytica 192: 117-129.
9. Crossa, J., H. Gauch Jr. y R. Zobel. 1990. Additive main effects and multiplicative interaction analysis of two international maize cultivar trials. Crop. Sci. 30(3): 493- 500.
10. Donoso-Ñanculao, G., M. Paredes, V. Becerra, C. Arrepol y M. Balzarini. 2016. GGE biplot analysis of multi-environment yield trials of rice produced in a temperate climate. Chilean J. Agric. Res. 76(2): 152-157.
11. Gauch, H. y R. Zobel. 1996. AMMI analysis of yields trials. In: M. Kangs y H. Gauch (eds.). Genotype by Environment Interaction. CRC Press, Boca Raton, FL. pp. 85-122.
12. Gollob, H. 1967. A statistical model which combines features of factor analytic and analysis of variance techniques. Psycometrica 33: 73-115
13. Instituto Nacional de Investigaciones Agrícolas. Unidad de Agro Meteorología. http://agrometeorologia.inia.gob.ve/ (consulta del 14/03/2018).
14. Lavoranti, O., A. Lins, H. Da Silva y C. Ferreira. 2004. Modelagem AMMI para estudos de interação em modelos estatísticos de efeitos fixos. Embrapa Florestas, Colombo, Paraná, Brasil. Comunicado Técnico 124, 7p. http://www.cnpf.embrapa.br (consulta del 13/03/2018).
15. Oliveira R., R. Von Pinho, M. Balestre y D. Ferreira. 2010. Evaluation of maizes hybrids environmental stratification by the methods AMMI and GGE biplot. Crop Breeding and Applied Biotechnology 10: 247-253.
16. Ramalho, M., A. Abreu, J. dos Santos y J. Nunes. 2012. Aplicação da genética quantitativa no melhoramento de plantas autógamas. Universidade Federal de Lavras, Minas Gerais, Brasil. 522 p.
17. Ramos L., A. Sanches y J. Cotes. 2009. Testes multiambientais na seleção de genótipos de arroz utilizando o modelo de regressão nos sítios ou locais. Ciência Rural, Santa Maria 39(1): 52-57.
18. Silva R. y G. Benin. 2012. Análises biplot: conceitos, interpretações e aplicações. Ciência Rural, Santa Maria 42(8): 1404-1412.
19. Samonte, S., L. Wilson, A. McClung y J. Medley. 2005. Targeting cultivars onto rice growing environments using AMMI and SREG GGE biplot analysis. Crop Science 45: 2414-2424.
20. Yan, W. 2002. Singular-value partition for biplot analysis of multi-environment trial data. Agronomy Journal 94(5): 990-996.
21. Yan, W. 2011. GGE Biplot vs. AMMI Graphs for Genotype-by-Environment data analysis. Journal of the India Society of Agricultural Statistics 65(2): 181-193.
22. Yan, W. y I. Rajcan. 2002. Biplot analysis of test sites and trait relations of soybean in Ontario. Crop Sci. 42: 11-20.
23. Yan, W. y J. Holland. 2010. A heritability-adjusted GGE biplot for test environment evaluation. Euphytica 171(3): 355-369.
24. Yan, W. y M. Kang. 2003. GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists, and Agronomists. CRC Press. Boca Raton, FL, USA.
25. Yan, W., L. Hunt, Q. Sheng y Z. Szlavnics. 2000. Cultivar evaluation and mega-environment investigation based on GGE biplot. Crop Sci. 40(3): 597-605.

Published

2020-03-28

How to Cite

Acevedo Barona, M., Álvarez, R., Silva, R., Torres, O., & Reyes, E. (2020). Interaction genotype environment in rice to identify mega and ideal environments by the model of site regression and biplot. Bioagro, 31(1), 35-44. Retrieved from https://revistas.uclave.org/index.php/bioagro/article/view/2611