Assessing genetic diversity of venezuelan elite rice lines using morpho-agronomic and molecular markers

Authors

  • Marco Acevedo-Barona Instituto Nacional de Investigaciones Agrícolas-Centro Nacional de Investigaciones Agrícolas y Pecuarias, INIA-CENIAP, Apdo 4653, Maracay 2101-A, Venezuela
  • Iris Pérez-Almeida Instituto Nacional de Investigaciones Agrícolas-Centro Nacional de Investigaciones Agrícolas y Pecuarias, INIA-CENIAP, Apdo 4653, Maracay 2101-A, Venezuela
  • Sandy Molina-Moret Dirección de Agricultura y Soberanía Alimentaria, Fundación de Estudios Avanzados (IDEA), Valle de Sartenejas, Caracas, Venezuela.
  • Darío Torrealba Dirección de Agricultura y Soberanía Alimentaria, Fundación de Estudios Avanzados (IDEA), Valle de Sartenejas, Caracas, Venezuela.
  • Carlos Marín-Rodríguez Instituto Nacional de Investigaciones Agrícolas-Centro Nacional de Investigaciones Agrícolas y Pecuarias, INIA-CENIAP, Apdo 4653, Maracay 2101-A, Venezuela

Keywords:

ISSR, Oryza sativa, plant breeding, Venezuela

Abstract

The genetic base of irrigated rice in Venezuela, and Latin America, is narrow and the Venezuelan National Project for the Improvement of Genetic Rice (PNMGA) has applied strategies to increase it. The objective of this work was to characterize the genetic diversity of 13 irrigated elite rice lines and four check varieties of economic importance, by means of morpho-agronomical and molecular markers, as well as to determine their association using the Mantel test. A total of 17 genotypes were planted on a trial during the 2014 irrigated cycle in the experimental field of the National Agricultural Research Institute (INIA)-Guárico using a completely randomized block design with three replicates, in a 20 m2-plot with standard agronomical management. Thirteen quantitative characters were evaluated and high variability among genotypes was found. Principal Components Analysis (PCA) showed that four attributes comprised 71 % of the total phenotypic variance. The UPGMA conglomerates analysis for both types of markers using Euclidean and Dice distance allowed the discrimination of the 17 genotypes in five and four groups, respectively, showing that the molecular analysis was more accurate and informative. The multiple correspondence factor analysis indicated that ISSR 880, 834 and 850 markers discriminated the 17 genotypes, and the Mantel test detected a low correlation between distance matrices. Both analyzes contribute to characterize genetic diversity in irrigated rice germplasm.

Downloads

Download data is not yet available.

References

1. Acevedo, M., E. Torres, O. Paez, R. Álvarez, O. Torres, W. Castrillo et al. 2007. Base genética de los cultivares de arroz de riego liberados en Venezuela. Agronomia Tropical 57(3): 197-204.
2. Arnao, E, Y. Jayaro, P. Hinrichsen, C. Ramis, C. Marín and I. Pérez-Almeida. 2008. Marcadores AFLP en la evaluación de la diversidad genética de variedades y líneas élites de arroz en Venezuela. Interciencia 33(5): 359-364.
3. Balzarini, M., C. Bruno, A. Peña, I. Teich and J.A. Di Rienzo. 2010. Estadística en Bio-tecnología. Aplicaciones en Info-Gen. Universidad Nacional de Córdoba. Córdoba, Argentina.
4. Berrio-Orozco, L., E. Torres-Toro, J. Barona-Valencia and J. Cuasquer-Sedano. 2016. Diversidad genética de las variedades de arroz FLAR liberadas entre 2003-2014. Agronomia Mesoamericana 27(2): 217-231.
5. Blair, M.W., O. Panaud and S.R. McCouch. 1999. Inter-simple sequence repeat (ISSR) amplification for analysis of microsatellite motif frequency and fingerprinting in rice (Oryza sativa L). Theoretical & Applied Genetics 98(5): 780–792.
6. Cuevas-Pérez, F., Guimaraes, E.P., L.E. Berrio and D. Gonzales. 1992. Genetic base of the irrigated rice in Latin America and the Caribbean. Crop Science 32(4): 1054-1059.
7. Fonseca, J., V. Cutrim and P. Rangel. 2002. Descritores Morpho agronômicos e fenológicos de cultivares comerciais de arroz de várzeas. Embrapa. Brasília, DF. 22 p.
8. Ghneim, T., D. Posso, I. Pérez-Almeida, G. Torrealba, A. Pieters, C.P. Martinez and J. Tohme. 2008. Assessment of genetic diversity in Venezuelan rice cultivars using simple sequence repeats markers. Electronic Journal of Biotechnology 11(5): 3-4.
9. Gupta, M., Y.S. Chyi, S.J. Romero and J.L. Own. 1994. Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple-sequence repeats. Theoretical and Applied Genetics 89(7-8): 998-1006.
10. Guimarães E.P., J. Borrero and J. Ospina-Rey. 1996. Genetic diversity of upland rice germoplasm distributed in Latin America. Pesquisa Agropecuaria Brasileira 31(3): 187-194.
11. INIA. 2017. Red de Agro-meteorología. Estación Bancos de San Pedro, Calabozo, estado Guárico. http://www.inia.gov.ve/index. php/institucional-inia/red-de-agrometeorolog ia-del-inia (retrieved March 12, 2017).
12. IRRI (International Rice Research Institute). 2002. Sistema de evaluación estándar de arroz. Manila, Filipinas. 55 p.
13. Joshi S., V. Gupta, R.R. Aggarwal, P. Ranjekar and D. Brar. 2000. Genetic diversity and phylogenetic relationship as revealed by inter-simple sequence repeat (ISSR) polymorphism in the genus Oryza. Theoretical & Applied Genetics 100(8): 1311–1320.
14. Mantel, N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Research, Chestnut 27(2): 209-220.
15. Pérez-Almeida, I., L.R. Angulo, G. Osorio, C. Ramis, A. Bedoya, R. Figueroa-Ruiz et al. 2011a. Método modificado de obtención de ADN genómico en orquídeas (Cattleya spp.) para amplificación con marcadores moleculares. Bioagro 23(1): 27-34.
16. Pérez-Almeida, I., E. Torres, L. Angulo and M. Acevedo. 2011b. Genetic diversity among Venezuelan rice cultivars based on parentage coefficient estimation and analysis using microsatellite molecular markers (SSR). Interciencia 36(7): 545-551.
17. Pérez-Almeida, I., R. Celi-Herán, F. Sánchez-Mora, L. Paz-Carrasco and B. Ramos-Viteri. 2019. Assessment of molecular genetic diversity of Ecuadorian rice cultivars using simple sequence repeat markers. Bioagro 31(1): 3-12.
18. Pieters, A., E. Graterol, E. Reyes, R. Alvarez and A. Gonzalez. 2011. Cincuenta años de mejoramiento genético del arroz en Venezuela. ¿Qué se ha logrado? Interciencia 36(12): 943-948.
19. Rangel, P., E.P. Guimarães and P. Neves. 1996. Base genética das cultivares de arroz (Oryza sativa L.) irrigado do Brasil. Pesquisa Agropecuaria Brasileira 31(5): 349-357.
20. Reddy, M.P., N. Sarla and E.A. Siddiq. 2002. Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica 128(1): 9-17.
21. Rohlf, F. 2000. NTSYS-pc: numerical taxonomy and multivariate analysis system, version 2.1. New York: Exeter Software. 98 p.
22. Torres, O., M. Salazar, M. Navas, R. Álvarez, E. Reyes, O. Moreno et al. 2006. Mejoramiento genético de arroz en Venezuela. Resumen histórico. INIA Divulga 8: 14-18.
23. Vieira, E., F. Carvalho, I. Bertan, M. Kopp, P. Zimmger, G. Benin et al. 2007. Association between genetic distances in wheat Triticum aestivum as estimated by AFLP and morphological markers. Genetics and Molecular Biology 30(2): 392-399.
24. Vieira E., J. Fialho, F. Faleiro, G Bellon, K. Fonseca, M. Silva et al. 2013. Caracterização fenotípica e molecular de acessos de mandioca de indústria com potencial de adaptação às condições do Cerrado do Brasil Central. Semina: Ciências Agrárias 34(2): 567-582.
25. Virk, P.S., J. Zhu, H.J. Newbury, G.J. Bryan, M.T. Jackson and B.V. Ford-Lloyd. 2000. Effectiveness of different classes of molecular marker for classifying and revealing variation in rice (Oryza sativa) germplasm. Euphytica 112(3): 275–284.
26. Zietkiewicz, E., A. Rafalski and D. Labuda. 1994. Genome finger-printing by Simple Sequence Repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20(2): 176-183.

Published

2020-04-06

How to Cite

Acevedo-Barona, M., Pérez-Almeida, I., Molina-Moret, S., Torrealba, D., & Marín-Rodríguez, C. (2020). Assessing genetic diversity of venezuelan elite rice lines using morpho-agronomic and molecular markers. Bioagro, 31(3), 203-212. Retrieved from https://revistas.uclave.org/index.php/bioagro/article/view/2652