Response of bell pepper (Capsicum annuum L.) to foliar applications of different doses and sources of leached vermicompost
Keywords:
Bio-products, bio-stimulants, cattle manure, goat manure, organic fertilizerAbstract
The search for organic alternatives that replace chemical fertilization is a worldwide trend, given the need to obtain agricultural products with lower environmental costs, a line in which this research is framed. The effect of foliar applications of vermicompost leachates of bovine and goat manure on growth, chlorophyll content and yield of pepper (Capsicum annuum L.) hybrid Salvador under semi-protected conditions was evaluated. The study was carried out in the Experimental Field of the Universidad Técnica de Manabí, located in the Santa Ana canton, Manabí, Ecuador, in 2016. The experiment was conducted in a randomized complete block design with four replications and seven treatments, consisting of 1:10, 1:20 and 1:30 (v/v) dilutions of vermicompost leachate of bovine and goat manure, plus a control without bioproducts. The height of the plants, amount of leaves, chlorophyll index and yield increased significantly with the application of the vermicompost leachate from bovine and goat manure. The highest yield was achieved with the 1:30 (v/v) treatment of leachate from the vermicompost of goat manure, which increased the yield by approximately 4.71 Mg∙ha-1. The effectiveness of vermicompost as organic fertilizer was proven.
Downloads
References
2. Alemán, R.D., J. Domínguez, Y. Rodríguez, S. Soria, R. Torres, J. C. Vargas et al. 2018. Indicadores morfofisiológicos y productivos del pimiento sembrado en invernadero y a campo abierto en las condiciones de la Amazonía ecuatoriana. Revista Centro Agrícola 45(1): 14-23.
3. Arancon, N.Q., C.A. Edwards y P. Bierman. 2006. Influences of vermicompost on field strawberries: Part 2. Effects on soil microbiological and chemical properties. Biores. Technol. 97: 831-840.
4. Arancon, N.Q., C.A. Edwards, P. Bierman, J. D. Metzger y C. Lucht. 2005. Effects of vermicomposts produced from cattle manure, food waste and paper waste on the growth and yield of peppers in the field. Pedobiologia 49(4): 297-306.
5. Aremu, A.O., W.A. Stirk, M.G. Kulkarni, D. Tarkowská, V. Turečkova, J. Gruz et al. 2015. Evidence of phytohormones and phenolic acids variability in garden-waste-derived vermicompost leachate, a well-known plant growth stimulant. Plant Growth Regul. 75: 483-492.
6. Banu, R., J. Shroff y S. Shah. 2017. Effect of sources and levels of sulphur and bio-fertilizer on growth, yield and quality of summer groundnut. Int. J. Agric. Sci. 13(1): 67-70.
7. Bernier-Villarroel, R. 1999. Análisis de suelo. Metodología e interpretación. Instituto Nacional de Investigaciones Agropecuarias (INIA), CRI Remehue. Osorno, Chile. Serie Actas Nº 2. 12 p. http://biblioteca.inia.cl/ medios/biblioteca/serieactas/NR25011.pdf (consulta del 04-03-2019).
8. Bhardwaj, D., M. Wahid-Ansari, R. Kumar-Sahoo y N. Tuteja. 2014. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb. Cell Fact. 13(66): 1-10.
9. Cabañas, M., A. Torres, B. Díaz, E. Héctor y Y. Cremé. 2005. Influence of three bioproducts of organic origin on the production of two banana clones (Musa spp AAB.) obtained by tissue cultures. Alimentaria 369: 111-116.
10. Calderín, A., R.L. Louro-Berbara, L. Portuondo, F. Guridi, O.L. Hernández, R. Hernández y R.N. Castro. 2012. Humic acids of vermicompost as an ecological pathway to increase resistance of rice seedlings to water stress. Afr. J. Biotechnol. 11(13): 3125-3134.
11. Canellas, P., F. Olivares, O. Aguiar, D. Jones, A. Nebbioso, P. Mazzei y A. Piccolo. 2015. Humic and fulvic acids as biostimulants in horticulture. Scien. Horticult. 196: 15-27.
12. Cardoso, M. R., L. P. Canellas, A. Rocha, D. B. Zandonadi, J.G.M. Guerra, D. Lopes de Almeida y G. de Araújo. 2006. Improving lettuce seedling root growth and ATP hydrolysis with humates from Vermicompost. II- Effect of Vermicompost source. Rev. Brasil. de Ciência do Solo 30(4): 657-664.
13. Darzi, M. T., S. Haj, M. R. Hadi, y F. Rejali. 2012. Effects of the application of vermicompost and phosphate solubilizing bacterium on the morphological traits and seed yield of anise (Pimpinella anisum L.). J. Med. Plants Res. 6(2): 215-219.
14. De Grazia, J., P. A. Tittonel y A. Chiesa. 2007. Efecto de sustratos con compost y fertilización nitrogenada sobre la fotosíntesis, precocidad y rendimiento de pimiento (Capsicum annuum). Cienc. Inv. Agr. 34(3): 195-204.
15. Du Jardin, P. 2015. Plant biostimulants: definition, concept, main categories and regulation. Scien. Horticul. 196: 3-14.
16. Esakkiammal, B., L. Lakshmibai y S. Sornalatha. 2015. Studies on the combined effect of vermicompost and vermiwash prepared from organic wastes by earthworms on the growth and yield parameters of Dolichous lab lab. Asian J. Pharm. Sci. & Technol. 5(4): 246-252.
17. García, R.C., L. Dendooven y F.A. Gutiérrez. 2008. Vermicomposting leachate (worm tea) as liquid fertilizer for maize (Zea mays L.) forage production. Asian J. Plant Sci. 7(4): 360-367.
18. Gutiérrez-Miceli, F.A., R.C. García-Gómez, R. Rincón-Rosales, M. Abud-Archila, M.A. Oliva-Llaven, M.J. Guillen-Cruz y L. Dendooven. 2008. Formulation of a liquid fertilizer for sorghum (Sorghum bicolor (L.) Moench) using vermicompost leachate. Biores. Technol. 99(14): 6174-6180.
19. Hulse-Kemp, A.M., H. Ashra, J. Plieske, J. Lemm, K. Stoffel, T. Hill et al. 2016. A HapMap leads to a Capsicum annuum SNP infinium array: a new tool for pepper breeding. Hort. Res. 3: 16036.
20. Joshi, R., A. P. Vig y J. Singh. 2013. Vermicompost as soil supplement to enhance growth, yield and quality of Triticum aestivum L.: a field study. Int. J. Recycl. Org. Waste Agric. 2: 16.
21. Joshi, R., J. Singh y A.P. Vig. 2015. Vermicompost as an effective organic fertilizer and biocontrol agent: effect on growth, yield and quality of plants. Rev. Environ. Sci. Biotechnol. 14(1): 137-159.
22. Karmakar, S., K. Brahmachari y A. Gangopadhyay. 2013. Studies on agricultural waste management through preparation and utilization of organic manures for maintaining soil quality. Afr. J. Agric. Res. 8(48): 6351-6358.
23. Khan, A. y F. Ishaq. 2011. Chemical nutrient analysis of different composts (vermicompost and pit compost) and their effect on growth of a vegetative crop Pisum sativum. Asian J. Plant Sci. Res. 1(1): 116-130.
24. Kwon, Y.T., C.W. Lee y J.H. Yun. 2009. Development of vermicast from sludge and powdered oyster shell. J. Cleaner Prod. 17(7): 708-711.
25. Ladan-Moghadam, A. R., Z. Oraghi-Ardebili y F. Saidi. 2012. Vermicompost induced changes in growth and development of Lilium Asiatic hybrid var. Navona. Afr. J. Agric. Res. 7(17): 2609-2621.
26. López-Baltazar, J., A. Méndez-Matías, L. Pliego-Marín, E. Aragón-Robles y M.L. Robles-Martínez. 2013. Evaluación agronómica de sustratos en plántulas de chile “onza” (Capsicum annuum) en invernadero. Rev. Mex. Cienc. Agríc. Pub. Esp. 6: 1139-1150.
27. Martínez, D., R. Huelva, L. Portuondo y F. Guridi. 2012. Evaluación del efecto protector de las sustancias húmicas líquidas en plantas de maíz cultivar P-2928 en condiciones de salinidad. Revista Centro Agrícola 39(1): 29-32.
28. Mateos, R.M., A. Jiménez, P. Román, F. Romojaro, S. Bacarizo, M. Leterrier et al. 2013. Antioxidant systems from pepper (Capsicum annuum L.): involvement in the response to temperature changes in ripe fruits. Int. J. Mol. Sci. 14: 9556-9580.
29. Meenakumari, T. y M. Shehkar. 2012. Vermicompost and other fertilizers effects on growth, yield and nutritional status of tomato (Lycopersicon esculentum) plant. World Res. J. Agric. Biotechnol. 1(1): 14-16.
30. Mirakalaei, S.M.M., Z.O. Ardebill y M. Mostafavi. 2013. The effects of different organic fertilizers on the growth of lilies (Lillium longiflorum). Int. Res. J. Appl. Basic Sci. 4(1): 181-186.
31. Moradi, H., M. Fahramand, A. Sobhkhizi, M. Adibian, M. Noori, A. Abdollahi y K. Rig. 2014. Effect of vermicompost on plant growth and its relationship with soil properties. Int. J. Farm. All. Sci. 3(3): 333-338.
32. Mycin, T.R., M. Lenin, G. Selvakumar y R. Thangadurai. 2010. Growth and nutrient content variation of groundnut Arachis hypogaea L. under vermicompost application. J. Exp. Sci. 1(8): 12-16.
33. Palma, J.M., A. Jiménez, F.J. Corpas, R.M. Mateos, M.C. Martí, F. Sevilla y L.A. del Río. 2011. Role of ascorbate on the fruit physiology of pepper (Capsicum annuum L.). Funct. Plant Sci. Biotech. 5: 56-61.
34. Pandey, S.K., S.K. Yaday y V.K. Singh. 2012. An overview on Capsicum annuum L. J. Pharm. Sci. & Technol. 4(2): 821-828.
35. Papathanasiou, F., I. Papadopoulos, I. Tsakiris y E. Tamoutsidis. 2012. Vermicompost as a soil supplement to improve growth, yield and quality of lettuce (Lactuca sativa L.). J. Food Agric. Environ. 10: 677-682.
36. Roberts, P., D.L. Jones y G. Edwards-Jones. 2007. Yield and vitamin C content of tomatoes grown in vermicomposted wastes. J. Sci. Food & Agric. 87(10): 1957-1963.
37. Singh, N.I. y J.S. Chauhan. 2009. Response of French bean (Phaseolus vulgaris L.) to organic manures and inorganic fertilizer on growth and yield parameters under irrigated condition. Nat. Sci. 7(5): 52-54.
38. Singh, R., R.K. Gupta, R.T. Patil, R.R. Sharma, R. Asrey, A. Kumar y K.K. Jangra. 2010. Sequential foliar application of vermicompost leachates improves marketable fruit yield and quality of strawberry (Fragaria x ananassa Duch.). Scien. Horticult. 124: 34-39.
39. Tejada, M., J. González, M. Hernández y C. García. 2008. Agricultural use of leachates obtained from two different vermicomposting processes. Biores. Technol. 99(14): 6228-6232.
40. Torres, A., J.L. Cué, G. Hernández y S. Peñarrieta. 2015. Efectos del Biostan en la altura y masa seca de Phaseolus vulgaris L., genotipo criollo. Rev. La Técnica 15: 18-25.
41. Torres, A., E. Héctor, G. Hernández y O. Fosado. 2017. Efectos del Biostan en los índices de crecimiento y los pigmentos fotosintéticos de Phaseolus vulgaris L. Rev. La Técnica 18: 25-35.
Published
How to Cite
Issue
Section
Rights of the author/s are from the year of publication
This work is under the license:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
The opinions expressed by the authors not necesarily reflect the position of the publisher or UCLA. The total or partial reproduction of the texts published in this journal is authorized, as long as the complete source and the electronic address of this journal is cited. Authors have the right to use their articles for any purpose as long as it is done for non-profit purposes. Authors can publish the final version of their work on internet or any other medium, after it has been published in this journal.
Bioagro reserves the right to make textual modifications and technical adjustments to the figures of the manuscripts, in accordance with the style and specifications of the journal.