Resistance of round tomato genotypes with determinate growth habit to two-spotted spider mites and silverleaf whitefly

Authors

  • Nádya Carrilho Santos Universidade Federal de Uberlândia, Instituto de Ciências Agrárias, campus Umuarama, 38408-100, Uberlândia-MG, Brasil.
  • Guilherme Repeza Marquez Universidade Federal de Uberlândia, Instituto de Ciências Agrárias, campus Umuarama, 38408-100, Uberlândia-MG, Brasil.
  • Gabriel Mascarenhas Maciel Universidade Federal de Uberlândia, campus Monte Carmelo, 38500-000, Monte Carmelo-MG, Brasil.
  • Lucas Medeiros Pereira Universidade Federal de Uberlândia, campus Monte Carmelo, 38500-000, Monte Carmelo-MG, Brasil.
  • Hugo Gabriel Peres Universidade Federal de Uberlândia, campus Monte Carmelo, 38500-000, Monte Carmelo-MG, Brasil.
  • Joicy V. Miranda Peixoto Universidade Federal de Uberlândia, Instituto de Ciências Agrárias, campus Umuarama, 38408-100, Uberlândia-MG, Brasil.

Keywords:

Allelochemicals, arthropod pests, Bemisia tabaci, biotic stress, Tetranychus urticae

Abstract

The requirement for round tomato hybrids, with determinate growth habit, for consumption in natura has considerably increased in Brazil. Despite all potential, tomato cropping presents as main obstacle the occurrence of pests during its cycle. The wild species Solanum pennellii has been used in order to obtain resistant genotypes. However, little research has been conducted to date aiming at developing round tomato genotypes that are resistant to pests and present determinate growth habit. Therefore, the experiment aimed at selecting determinate genotypes that are rich in acylsugars and at checking their levels of resistance to two of the most important pests of the crop (two-spotted spider mite and silverleaf whitefly). Thirteen treatments were evaluated, 10 UFU057-F2BC1 generations, and three check treatments that comprised the wild species S. pennellii and two cultivated tomatoes (cv. Santa Clara and UFU057). The genotypes UFU057-F2BC1#112 and UFU057-F2BC1#101 stood out, showing the highest acylsugar content (17.1 and 18.4 nmols·cm-2 of leaf area, respectively). The same genotypes presented an elevated level of resistance to Bemisia tabaci with low values of oviposition, number of nymphs and adults of the fly. Regarding the two-spotted spider mite, the genotype UFU057-F2BC1#112 did not allow much advance of the mites along the surface of the leaflet, thus, it is concluded that this genotype with determined growth habit is promising for the tomato genetic breeding program, presenting high acylsugar contents and moderate to elevated level of resistance to Tetranychus urticae and Bemisia tabaci.

Downloads

Download data is not yet available.

References

1. Agarwal, S. and A.V. Rao. 2000. Tomato lycopene and its role in a human health and chronic diseases. Canadian Medical Association Journal 163(6): 739-744.

2. Alvarenga, M.A.R., P.C.T. Melo and F.H. Shirahige. 2013. Tomate: produção em campo, casa de vegetação e hidroponia. Editora UFLA, Lavras. 457 p.

3. Carter, C.D., J.N. Sacalis and T.J. Gianfagna. 1989. Zingiberene and Resistance to Colorado Potato Beetle in Lycopersicon hirsutum f. hirsutum. Journal of Agriculture Culture and Food Chemistry 37(1): 206-210.

4. Cruz, C.D. 2013. GENES: A software package for analysis in experimental statistics and quantitative genetics. Acta Scientiarum Agronomy 35(3): 271-276.

5. Dinsdale, A., L. Cook, C. Riginos, Y.M. Buckley and P. De Barro. 2010. Refined Global analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) mitochondrial cytochrome oxidase 1 to identify species level genetic boundaries. Annals of the Entomological Society of America 103(2): 196-208.

6. Gonçalves Neto, L.D., W.R. Maluf, M.G. Cardoso, L.A.A. Gomes and I.R. Nascimento. 2007. Herança de acilaçúcares em genótipos de tomateiro provenientes de cruzamento interespecífico. Pesquisa Agropecuária Brasileira 42(5): 699-705.

7. Gonçalves Neto, A.C., V.F. Silva, W.R. Maluf, G.M. Maciel, D.A.C. Nizio, L.A.A. Gomes and S.M. Azevedo. 2010. Resistência à traça-do-tomateiro em plantas com altos teores de acilaçúcares nas folhas. Horticultura Brasileira 28(2): 203-208.

8. Howe, G.A., J. Lightner, J. Browse and C.A. Ryan. 1996. An octadecanoid pathway mutant (JL5) of tomato is compromised in signaling for defense against insect attack. The Plant Cell 8(11): 2067-2077.

9. Maciel, G.M. and E.C. Silva. 2014. Proposta metodológica para quantificação de acilaçúcares em folíolos de tomateiro. Horticultura Brasileira 32(2): 174-177.

10. Maciel, G.M., R.S. Almeida, J.P. da Rocha, V. Andaló, G.R. Marquez, N.C. Santos and R.R. Finzi. 2017. Mini tomato genotypes resistant to the silverleaf whitefly and to two-spotted spider mites. Genetics and Molecular Research 16(1): 1-9.

11. Maciel, G.M., G.R. Marquez, E.C. da Silva, V. Andaló and I.F. Belloti. 2018. Tomato genotypes with determinate growth and high acylsugar content presenting resistance to spider mite. Crop Breeding and Applied Biotechnology 18(1): 1-8.

12. Maluf, W.R., G.M. Maciel, L.A.A. Gomes, M.G. Cardoso, L.D. Gonçalves, E.C. Silva and M. Knapp. 2010. Broad-spectrum arthropod resistance in hybrids between high and low-acylsugar tomato lines. Crop Science 50(2): 439-450.

13. Peixoto, J.V.M., R.S. Almeida, J.P.R. Rocha, G.M. Maciel, N.C. Santos and L.M. Pereira. 2019. Hierarchical and optimization methods for the characterization of tomato genotypes. Revista Brasileira de Engenharia Agrícola e Ambiental 23(1): 27-32.

14. Pereira, G.V.N., W.R. Maluf, L.D. Gonçalves, I.R. Nascimento, L.A.A. Gomes and V. Licursi. 2008. Seleção para alto teor de acilaçúcares em genótipos de tomateiro e sua relação com a resistência ao ácaro vermelho (Tetranychus evansi) e à traça (Tuta absoluta). Ciência e Agrotecnologia 32(3): 996-1004.

15. Resende, J.T.V., M.G. Cardoso, W.R. Maluf, C.D. Santos, L.D. Gonçalves, L.V. Resende and F.O. Naves. 2002. Método colorimétrico para quantificação de acilaçúcar em genótipos de tomateiro. Ciência e Agrotecnologia 26(6): 1204-1208.

16. Silveira, L.F.V., D. Polanczyk and C.R. Pratissoli. 2011. Franco Seleção de isolados de Bacillus thuringiensis Berliner para Tetranychus urticae Koch. Arquivos do Instituto Biológico 78(2): 273-278.

17. Simmons, A.T. and G.M. Gurr. 2005. Trichomes of Lycopersicon species and their hybrids: effects on pest and natural enemies. Agricultural and Forest Entomology 7(4): 265-276.

18. Treichel, M., C. Cleonice, F.F. Cásio, B.R. Romar. 2016. Anuário Brasileiro do Tomate. Editora Gazeta, Cruz, Santa do Sul. 84 p. https://www.embrapa.br/documents/ (retrieved Sept. 11, 2019).

19. Villand, J., P.W. Skroch, T. Lai, P. Hanson, C.G. Kuo and J. Nienhuis. 1998. Genetic variation among tomato accessions from primary and secondary centers of diversity. Crop Science 38(5): 1339-1347.

20. Weston, P.A. and J.C. Snyder. 1990. Thumbtack bioassay: a quick method of measuring plant resistance to two-spotted spider mites (Acari: Tetranychidae). Journal of Economic Entomology 83(2): 501-504.

Published

2020-05-15

How to Cite

Carrilho Santos, N., Repeza Marquez, G., Mascarenhas Maciel, G., Medeiros Pereira, L., Peres, H. G., & Miranda Peixoto, J. V. (2020). Resistance of round tomato genotypes with determinate growth habit to two-spotted spider mites and silverleaf whitefly. Bioagro, 32(1), 15-22. Retrieved from https://revistas.uclave.org/index.php/bioagro/article/view/2682

Issue

Section

Artículos