Evaluation of the agronomic potential of yellow corn hybrids based on the GGE biplot analysis and the AMMI model

Authors

  • Pedro J. García M. Instituto Nacional de Investigaciones Agrícolas (INIA). Araure, estado Portuguesa, Venezuela.
  • Alberto A. Pérez C. Instituto Nacional de Investigaciones Agrícolas (INIA). Araure, estado Portuguesa, Venezuela.
  • Rubén J. Silva D. Instituto Nacional de Investigaciones Agrícolas (INIA-CENIAP). Maracay. Venezuela.
  • Rosa M. Álvarez P. Instituto Nacional de Investigaciones Agrícolas (INIA). Araure, estado Portuguesa, Venezuela.
  • Pedro P. Monasterio P. Instituto Nacional de Investigaciones Agrícolas (INIA). Yaritagua, Yaracuy. Venezuela.
  • Luis A. Taramona R. Universidad Le Cordón Blue, Lima, Perú.

Keywords:

Genotype by environment interaction, grain yield, phenotypic stability, Zea mays

Abstract

When evaluating different genotypes in a varied number of agroecological environments, genotype-by-environment interaction (GEI) makes it difficult to select the most promising materials for different locations. The objective of this study was to evaluate the GEI and phenotypic stability of 20 yellow maize hybrids, using the AMMI and GGE biplot methodologies. We used the information generated in previous maize cultivars agronomic validation assays, developed in seven Venezuela locations. The experiments were conducted using a randomized complete blocks design with three replications, and the cultivar agronomic behavior was determined by the grain yield, adjusted to 12 % humidity. When the GEI was detected, a multivariate analysis was carried out to obtain the singular values of the first AMMI terms that were significant for genotypes and environments. The GGE biplot was based on the bi-linear linear regression model of the environments. The first three axes (PC) were highly significant, explaining about 80 % of the GEI. Nevertheless, while PC1 only explained 42 % of the GEI, both PC1 and PC2 explained 61.72 % of this interaction. According to the AMMI model, the hybrids HIMECA-24A93 (G7) and SYN-730 (G19) resulted with high stability and performance for the different environments, while the GGE biplot analysis determined the best hybrids for each of the studied environments. Additionally, these results suggest that both methods can be considered as complementary, very useful in plant genetic improvement programs.

Downloads

Download data is not yet available.

References

1. Alejos, G., P. Monasterio y R. Rea. 2006. Análisis de la interacción genotipo ambiente para rendimiento de maíz en la región maicera del estado Yaracuy, Venezuela. Agronomía Trop. 56(3): 369-384.

2. Becker, H. C. 1981. Correlations among some statistical measures of phenotypic stability. Euphytica 30: 835-840.

3. Blum, A. 1988. Plant Breeding for Stress Environments. Boca Raton, FL, USA, CRC Press. 222 p.

4. Cabrera, S., P. García, F. Morillo y C. Sánchez. 2001. Estabilidad del rendimiento de híbridos blancos de maíz (Zea mays L.) en diferentes zonas agroecológicas de Venezuela, Revista UNELLEZ de Ciencia y Tecnología, 19: 182-198.

5. Cabrera, S., C. Marín, P. Romero, L. Hernández, F. Morillo y C. Sánchez. 1997. Análisis de estabilidad del rendimiento en híbridos de maíz (Zea mays L.), en zonas productoras de los estados Portuguesa y Barinas. Revista Científica de la Fundación para la Investigación Agrícola DANAC. http://www.danac.org.ve.

6. Córdova, H. 1991. Estimación de parámetros de estabilidad para determinar la respuesta de híbridos de maíz (Zea mays L.) ambientes contrastantes de Centro América, Panamá y México. Agro. Mesoamer. 2: 1-10.

7. Cornelius, P. L., J. Crossa and M. S. Seyedsadr. 1996. Statistical tests and estimators for multiplicative models for genotype by environment interaction. In Kang, M. S. and Gauch, H.G. Jr. (ed.) Genotype by environment interaction. CRC Press, Boca Raton, FL, USA. pp. 199-234.

8. Crossa, J. 1990. Statistical analysis of multilocations trials, Academic Press, Advances in Agronomy 44: 55-85.

9. Crossa, J., P. Cornelius y M. Vargas. 2000. Modelos Estadísticos Multiplicativos para el Análisis de la Interacción Genotipo x Ambiente. CIMMYT Library. México D. F., México. https://repository.cimmyt.org/bitstream /handle/10883/3487/68592.pdf?sequence=1&is Allowed=y.

10. Crossa, J., H. G. Gauch Jr. and R. W. Zobel 1990. Additive main effects and multiplicative interaction analysis of two international maize cultivar trials. Crop Sci. 30: 493-500.

11. De León, H., F. R. Sánchez, M. H. Reyes, D. S. Garduño, G. M. Zambrano, R. C. Cadenas y J. D. Cárdenas. 2005. Potencial de rendimiento y estabilidad de combinaciones germo-plásmicas formadas entre grupos de maíz. Rev. Fit. Mex. 28(2): 135-143.

12. Gabriel K. R. 1971: The biplot graphic display of matrices with application to principal components analysis. Biometrika 58: 453-467.

13. García, P., S. Cabrera, A. Pérez, R. Silva, R. Álvarez, C. Marín, P. Monasterio. y M. Santella. 2009. Estabilidad del rendimiento y potencial agronómico de cultivares de maíz de endospermo normal y QPM en zonas agroecológicas de Venezuela. Agronomía Trop. 59(4): 433-443.

14. Gauch H.G., R. W. Zobel. 1988: Predictive and postdictive success of statistical analysis of yield trials. Theoretical and Applied Genetics 76: 1-10.

15. Gauch, H. G. and R. W. Zobel. 1996. AMMI analysis of yield trials. In: M. Kang y H. Gauch (eds.). Genotype by Environment Interaction. CRC Press, Boca Ratón, FL, USA. pp. 85-122.

16. Miranda, G., L. Souza, L. Moreira, H. Namorato, L. Rodríguez y M. Oliveira. 2009. Multivariate analyses of genotype x environment interaction of popcorn. Pesquisa Agropecuária Brasileira 44: 45-50.

17. San Vicente, F., C. Marín y D. Díaz. 2005. Estabilidad del rendimiento y potencial agronómico de híbridos de maíz de alta calidad de proteína (QPM) en Venezuela. Agronomía Trop. 55(3): 397-410.

18. Souza, A., G. Miranda, M. Gonzaga y L. Souza, L. 2009. Predicting the genetic gain in the Brazilian white maize landrace. Ciência Rural 39: 19-24.

19. Steel, R. y J. Torrie. 1988. Bioestadística: Principios y Procedimientos. McGraw-Hill /Interamericana, México.

20. Vargas, H. M. y J. Crossa. 2000. El análisis AMMI y la gráfica del Biplot en SAS. CIMMYT, México, DF. pp. 26-42. http://www.cimmyt.cgiar.org/biometrics (con-sulta de Nov 1, 2016).

21. Wardofa, G., H. Mohammed, D. Asnake y T. Alemu. 2019. Genotype x environment interaction and yield stability of bread wheat genotypes in Central Ethiopia. J. Plant Breed. Genet. 7(2): 87-94.

22. Yan, W. 2001. GGE biplot a Windows application for graphical analysis of multi-environment trial data and other types of two-way data. Agron. J. 93: 1111-1118.

23. Yan, W. and M. Kang. 2003. GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists, and Agronomists. CRC Press, Boca Raton, FL, USA.

24. Yan, W. y N. Tinker. 2006. Biplot analysis of multi-environment trial data: Principles and applications. Canadian J. Plant Sci. 623-645.

25. Yan, W., P.L. Cornelius, J. Crossa y L.A. Hunt. 2001. Two types of GGE biplots for analyzing multi-environment trial data. Crop Sci. 41: 656-663.

26. Yan, W., L.A. Hunt, Q. Sheng y Z. Szlavnics. 2000. Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Sci. 40: 597-605.

27. Yan, W., M. Kang, B. Ma, S. Woods y P.L. Cornelius. 2007. GGE Biplot vs. AMMI analysis of genotype by environment data. Crop Sci. 47: 641-653.

Published

2020-05-16

How to Cite

García M., P. J., Pérez C., A. A., Silva D., R. J., Álvarez P., R. M., Monasterio P., P. P., & Taramona R., L. A. (2020). Evaluation of the agronomic potential of yellow corn hybrids based on the GGE biplot analysis and the AMMI model. Bioagro, 32(2), 95-106. Retrieved from https://revistas.uclave.org/index.php/bioagro/article/view/2693

Issue

Section

Artículos