Effect of the implementation of different agricultural systems on the soil quality from the municipality of Cachipay, Cundinamarca, Colombia
Keywords:
Agroecology, conventional agriculture, polyculture, soil quality indicatorsAbstract
Soil quality is considered a measure of the sustainability of land use and agricultural management practices. This quality can be determined by monitoring different types of physical, chemical and biological soil indicators. The objective of the present study was to evaluate the effect of the implementation of different agricultural management in four representative production systems (PS) such as polyculture, organic coffee cultivation, crop of Sechium edule, and pasture at rest) at the municipality of Cachipay in Cundinamarca, Colombia. Two sampling events were carried out in June and September 2016, in which two sampling areas were selected for each PS. Within each area, two quadrants (2.5 x 2.5 m) were established from which two composite samples (25 subsamples each) of soil (0-15 cm) were taken. The results show that the polyculture and the organic coffee crop positively impact the physical state of the soil (penetration resistance, mean weighted diameter, stability index, and aggregation states), which seems to generate a better environment for edaphic microorganisms, reflected in a higher density of total heterotrophs and higher catalase enzymatic activity. It showed that implementation of different agricultural management practices in the PS generates modifications in the soil properties, which can alter the soil processes and their functioning.
Downloads
References
2. Araya, T., J. Nyssen, B. Govaerts, J. Deckers, R. Sommer, H. Bauer y W. Cornelis. 2016. Seven years resource-conserving agriculture effect on soil quality and crop productivity in the Ethiopian drylands. Soil and Tillage Research 163: 99-109.
3. Balota, E., M. Kanashiro, A. Filho, D. Andrade y R. Dick. 2004. Soil enzyme activities under long-term tillage and crop rotation systems in subtropical agroecosystems. Braz. J. Microbiol. 35: 300-306.
4. Brzezińska, M., T. Włodarczyk, W. Stępniewski y G. Przywara. 2005. Soil aeration status and catalase activity. Acta Agrophysica 5(3): 555-565.
5. Biswas, S., G. Hazra, T. Purakayastha, N. Saha, T. Mitran, S. Roy y B. Mandal. 2017. Establishment of critical limits of indicators and indices of soil quality in rice-rice cropping systems under different soil orders. Geoderma 292: 34-48.
6. Cambi, M., Y. Hoshika, B. Mariotti, E. Paoletti, R. Picchio, R. Venanzi y E. Marchi. 2017. Compaction by a forest machine affects soil quality and Quercus robur L. seedling performance in an experimental field. Forest Ecology and Management 384: 406-414.
7. Campitelli, P., A. Aoki, O. Gudelj, A. Rubenacker y R. Sereno. 2010. Selección de indicadores de calidad de suelo para determinar los efectos del uso y prácticas agrícolas en un área piloto de la región central de Córdoba. Ciencia del suelo 28(2): 223-231.
8. Cubillos, A., V. Vallejo, Z. Arbeli, W. Terán, R. Dick, C. Molina y F. Roldan. 2016. Effect of the conversion of conventional pasture to intensive silvopastoral systems on edaphic bacterial and ammonia oxidizer communities in Colombia. European Journal of Soil Biology 72: 42-50.
9. Cruz Vargas, A. 2012. Plan Departamental de Desarrollo "Cundinamarca Calidad de Vida". Diagnóstico Situacional. Imprenta Nacional de Colombia. Bogotá. 20-21.
10. Chopin, P., J. Blazy, L. Guindé, R. Tournebize y T. Doré. 2017. A novel approach for assessing the contribution of agricultural systems to the sustainable development of regions with multi-scale indicators: Application to Guadeloupe. Land Use Policy (62): 132-142.
11. Doran, J. y M. Zeiss. 2000. Soil health and sustainability: managing the biotic component of soil quality. Applied Soil Ecology 15: 3-11.
12. EPA. 2004. Soil and waste pH. Method 9045D. SW-846 Methods. Test methods for evaluating solid waste, physical/chemical method. https://www.epa.gov/sites/production/files/2015-12/documents/9045d.pdf.
13. FAO (Food and Agriculture Organization of the United Nations). 1994. FESLM: an International Framework for Evaluating Sustainable Land Management. World Soil Resources Report. Rome. 74 p.
14. FAO (Food and Agriculture Organization of the United Nations). 2015. Boletín del Año Internacional de los Suelos América Latina y el Caribe. Suelos degradados: una amenaza para la Seguridad Alimentaria. Número 1 - Agosto. 9 p.
15. Fernández, L., N. Rojas, T. Roldán, M. Carrillo, M. Ramírez, H. Zegarra, H. Uribe, R. Reyes, R. Flores y D. Arce. 2006. Manual de técnicas de análisis de suelos aplicadas a la remediación de sitios contaminados. Instituto Mexicano del Petróleo Secretaría de Medio Ambiente y Recursos Naturales Instituto Nacional de Ecología México, D.F. 184 p.
16. Ferreras, L., G. Magra, P. Besson, E. Kovalevski y F. García. 2007. Indicadores de calidad física en suelos de la Región Pampeana Norte de Argentina bajo siembra directa. Ciencia del Suelo 25(2): 159-172.
17. Gardi, C., M. Angelini, S. Barceló, J. Comerma, C. Cruz Gaistardo, A. Encina Rojas, et al. (eds.). 2014. Atlas de suelos de América Latina y el Caribe, Comisión Europea - Oficina de Publicaciones de la Unión Europea, L-2995 Luxembourg. 176 p.
18. Gathala, M., J. Ladha, V. Kumar, Y. Saharawat, V. Kumar, V. Kumar y P. Sharma. 2011. Effect of tillage and crop establishment methods on physical properties of a medium-textured soil under a seven-year rice-wheat rotation. Soil Sci. Soc. Am. J. 75: 1851-1862.
19. Głąb, T. 2014. Effect of soil compaction and N fertilization on soil pore characteristics and physical quality of sandy loam. Soil and Tillage Research 144: 8-19.
20. Havlin, J., J. Beaton, S. Tisdale y W. Nelson. 2005. Soil fertility and Fertilizers: An Introduction to Nutrient Management. Prentice Hall. Upper Saddle River, NJ.
21. IGAC (Instituto Geográfico Agustín Codazzi). 2000. Estudio General de suelos y zonificación de tierras del Departamento de Cundinamarca. Cap. 4. Propiedades de los Suelos. 70 p.
22. Johnson, J. y K. Temple. 1964. Some variable affecting the measurement of “catalase activity” in soil. Soil Sci. Soc. Am. Proc. 28: 207-209.
23. Kaschuk, G., O. Alberton y M. Hungria. 2011. Quantifying effects of different agricultural land uses on soil microbial biomass and activity in Brazilian biomes: inferences to improve soil quality. Plant and Soil 338: 467-481.
24. Lisetskii, F., V. Stolba y O. Marininа. 2015. Indicators of agricultural soil genesis under varying conditions of land use, Steppe Crimea. Geoderma 239: 304-316.
25. Magdoff, F. y R. Weil. 2004. Soil organic matter management strategies. In: F. Magdoff y R. Weil (eds.). Soil Organic Matter in Sustainable Agriculture. CRC Press, New York. pp. 45-65.
26. Maharjan, M., M. Sanaullah, B. Razavi y Y. Kuzyakov. 2017. Effect of land use and management practices on microbial biomass and enzyme activities in subtropical top-and sub-soils. Applied Soil Ecology 113: 22-28.
27. Melero, S., R. López-Garrido, J. Murillo y F. Moreno. 2009. Conservation tillage: Short-and long-term effects on soil carbon fractions and enzymatic activities under Mediterranean conditions. Soil and Tillage Research 104(2): 292-298.
28. Milne, R. y R. Haynes. 2004. Soil organic matter, microbial properties, and aggregate stability under annual and perennial pastures. Biology and Fertility of Soils 39(3): 172-178.
29. Mitchell, J., A. Shrestha, K. Mathesius, K. Scow, R. Southard, R. Haney y W. Horwath. 2017. Cover cropping and no-tillage improves soil health in an arid irrigated cropping system in California’s San Joaquin Valley, USA. Soil and Tillage Research 165: 325-335.
30. Muñoz, K., C. Buchmann, M. Meyer, M. Schmidt-Heydt, Z. Steinmetz, D. Diehl y G.E. Schaumann. 2017. Physicochemical and microbial soil quality indicators as affected by the agricultural management system in strawberry cultivation using straw or black polyethylene mulching. Applied Soil Ecology 113: 36-44.
31. Newell-Price, J., M. Whittingham, B. Chambers y S. Peel. 2013. Visual soil evaluation in relation to measured soil physical properties in a survey of grassland soil compaction in England and Wale. Soil & Tillage Research. 127: 65-73.
32. Nimmo J. y K. Aperkins. 2002. Aggregate stability and size distribution methods of soil analysis. In: J. Dane y G. Topp (eds.) Methods of Soil Analysis. Part 4. Physical Methods. Soil Science Society of America Book Series No. 5. Soil Science of America, Madison. pp. 317-328.
33. Ordoñez, M., L. Galicia, A. Figueroa, I. Bravo y M. Peña. 2015. Effects of peasant and indigenous soil management practices on the biogeochemical properties and carbon storage services of Andean soils of Colombia. European Journal of Soil Biology 71: 28-36.
34. Obade, V. de P. y R. Lal. 2016. Towards a standard technique for soil quality assessment. Geoderma 265: 96-102.
35. POT (Plan de Ordenamiento Territorial). 2000. Esquema de ordenamiento territorial del Municipio de Cachipay, Departamento de Cundinamarca, Colombia. 132 p.
36. Raiesi, F. 2017. A minimum data set and soil quality index to quantify the effect of land use conversion on soil quality and degradation in native rangelands of upland arid and semiarid regions. Ecological Indicators 75: 307-320.
37. Rebello-Portella, C., M. Guimarães, C. Feller, I. Fonseca y J. Tavares Filho. 2012. Soil aggregation under different management systems. Revista Brasileira de Ciência do Solo 36(6): 1868-1877.
38. Singh, K., A. Mishra, B. Singh, R. Singh y D. Patra. 2016. Tillage effects on crop yield and physicochemical properties of sodic soils. Land Degradation & Development 27(2): 223-230.
39. Schulte, E. y B. Hopkins. 1996. Estimation of organic matter by weight loss-on-ignition. In: F. Magdoff et al. (ed.). Soli Organic Matter: Analysis and Interpretation. SSSA Spec. Publ. 46. SSSA, Madison, WI. pp. 21-31.
40. Tisdall, J. y J. Oades. 1982. Organic matter and water stable aggregates in soils. Journal of Soil Science 33(2): 141-163.
41. Torres, D., J. Álvarez, J. Contreras, M. Henríquez, W. Hernández, J. Lorbes y J. Mogollón. 2017. Identificación de potencialidades y limitaciones de suelos agrícolas del estado Lara, Venezuela. Bioagro 29(3): 207-218.
42. Trasar-Cepeda, C., M. Leiros, y F. Gil Sotres. 2008. Modification of biochemical properties by soil use. R.C. Suelo Nutr. Veg. 8: 53-60.
43. Tueche J. y S. Hauser. 2011. Maize (Zea mays L.) yield and soil physical properties as affected by the previous plantain cropping systems, tillage and nitrogen application. Soil and Tillage Research 115: 88-93.
44. Unalmed. 2006. Métodos físicos de suelos. Escuela de Geociencias, Facultad de Ciencias. http://www.unalmed.edu.co/ (consulta del 10-05-2017).
45. Vallejo, V., F. Roldan y R. Dick. 2010. Soil enzymatic activities and microbial biomass in an integrated agroforestry chronosequence compared to monoculture and a native forest of Colombia. Biology and Fertility of Soils 46(6): 577-587.
46. Vallejo, V., Z. Arbeli, W. Terán, N. Lorenz, R. Dick y F. Roldan. 2012. Effect of land management and Prosopis juliflora (Sw.) DC trees on soil microbial community and enzymatic activities in intensive silvopastoral systems of Colombia. Agriculture, Ecosystems & Environment 150: 139-148.
47. Vallejo-Quintero, V. 2013. Importancia y utilidad de la evaluación de la calidad de suelos mediante el componente microbiano: experiencias en sistemas silvopastoriles. Colombia Forestal 16(1): 83.
48. Veiga M., D. Reinert y J. Reichert. 2009. Aggregate stability as affected by short and long-term tillage systems and nutrient sources of a hapludox in southern Brazil. Revista Brasileira de Ciência do Solo 33(4): 767-777.
49. Xu, S., M. Silveira, K. Inglett, L. Sollenberger y S. Gerber. 2017. Soil microbial community responses to long-term land use intensification in subtropical grazing lands. Geoderma 293: 73-81.
Published
How to Cite
Issue
Section
Rights of the author/s are from the year of publication
This work is under the license:
Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
The opinions expressed by the authors not necesarily reflect the position of the publisher or UCLA. The total or partial reproduction of the texts published in this journal is authorized, as long as the complete source and the electronic address of this journal is cited. Authors have the right to use their articles for any purpose as long as it is done for non-profit purposes. Authors can publish the final version of their work on internet or any other medium, after it has been published in this journal.
Bioagro reserves the right to make textual modifications and technical adjustments to the figures of the manuscripts, in accordance with the style and specifications of the journal.